China Headquarters

Address: 3/F, Block 2, Nanyou Tianan Industrial Park, Nanshan District Shenzhen, China Website: http://www.leadshine.com

Sales Hot Line:

Tel: 86-755-2643 4369 (for All) 86-755-2641-7674 (for Asia, Australia, Africa region) 86-755-2640-9254 (for Europe, America region) Fax: 86-755-2640-2718 Email: sales@leadshine.com

Technical Support:

Tel: 86 755-2641-8447 and 86-755-2647-1129 Fax: 86-755-2640-2718 Email: tech@leadshine.com and vic@leadshine.com

Leadshine U.S.A

Address: 17 Deer Greek, Irvine, CA 92604, USA Tel: 1-949-608-7270 Fax: 1-949-608-7298 Website: http://www.leadshineUSA.com Email: usa_sales@leadshine.com and cli@leadshine.com

Leadshine Hong Kong

Address: Rm 3, 9/F, Block E, Wah Lok Industrial Center, 31-41 Shan Mei St., Fo Tan, Shatin, Hong Kong Tel: 852-2952-9114 Fax: 852-2952-9395 Email: hk_sales@leadshine.com

Leading Technology Shining Value

Motion Control Products 2010 - 2011

Company Overview

Founded in 1997, Leadshine Motion Technology Ltd. specializes in developing, manufacturing, and distributing high-quality cost-effective motion control products. Its products include motion controllers, stepping drives and motors, DC servo products, AC servo products, and power supplies. Leadshine serves various industrial and OEM customers in Asia, Europe, North/South America, Africa and Australia.

Leadshine is one of the LARGEST manufacturers of motion control products around the world. Leading by an MIT PhD graduate, Leadshine's R&D team of 80 talented engineers is capable of designing high-quality motion control products based on the latest technologies. Leadsine's manufacturing facilities are ISO-9001 certified and professionally staffed.

Leadshine is committed to provide its customers with world-class motion control products at highly competitive prices. "LEADING technology and SHINING value" is always what Leadshine intends to offer to its customers.

R&D

Leadshine is proud of its talented research & development team, which is one of the best in the motion control industry. We are capable of designing world-class products which can meet high requirements of our customers. Many innovative designs and products from Leadshine have been awarded for patents by Chinese government.

Product Quality

Leadshine has been awarded the ISO 9001 registration for quality management practices since September 2004. The certification is a testimony of Leadshine's commitment to provide its customers with high quality products and services.

Technical Support

Staffed with a highly professional and experienced technical support team, Leadshine can help its customers to increase productivity, reduce design & selection risks, and minimize the product development time. We are able to support our customers through email, telephone, field support, product studying conference, and some other approaches.

You can contact Leadshine technical support by phone at 86-755-2641-8447, by fax at 86-755-2640-2718, or by email at tech@leadshine.com.

Quality Products Selling 1,000,000 pcs/year!

Design & Verification

Since the formation in 1997, Leadshine has been investing heavily in research and development for the newest motion technology. Leadshine owns a large number of patents and copyrights on its hardware and software of its products. Before released to its customers, all Leadshine products have been verified and tested in Leadshine's state-of-the-art laboratory.

Quality Assurance

All Leadshine's products have to past QC and 24-hour aging test, making the usual return & repair rate is under 0.5%. And that is why Leadshine can offer **LONGER** warranty period (18 months) than most other motion control product manufacturers.

Assembly Line

Leadshine product quality is guaranteed by an ISO-certified manufacturing system which includes rigorous supplier selection, incoming parts QC, in-process QC, final QA, and 24-hour aging test. The certification is a testimony of Leadshine's commitment to provide its customers with high quality products and services.

Support & Service

Leadshine's professional and experienced technical team can help customers to reduce design and selection risks, and minimize product development time through support of email, field support, exhibitions, product studying conference, and etc.

Innovative Products with High Reliability

Stepping Drives

Currently, Leadshine offers two main series of 2-phase microstepping drives, the digital DM series and analog M series. The high performance DM drives are based on powerful 32-bit DSP control technology. Their features include super-low stepping noise, anti-resonance, low-speed ripple smoothing, and low motor heating. The low-cost M drives employ precise analog current control and are characterized by superior highspeed torque, relatively low stepping noise, and low motor heating. Leadshine also supplies 3-phase digital and analog stepping drives.

DM Series Digital Stepping Drives (P5-P16)

M Series Analog Stepping Drives (P17-P28)

World-class Products at Highly Competitive Prices

Stepping Motors

Leadshine offers 2-phase and 3-phase stepping motors from NEMA frame size 14 to 51. Made of high quality cold roll sheet copper and anti-high temperature permanent magnet, Leadshine's stepping motors are highly reliable and generate low motor heating. Because of their nice internal damping characteristics, those stepping motors can run very smoothly and have no obvious resonance area within the whole speed ranges.

NEMA14 to NEMA51 Stepping Motors (P31-P42)

Power Supplies

Leadshine offers two series power supplies, including SPS series switching mode power supplies and PS series linear power supplies. These power supplies are specially designed to power inductive loads generated in stepping and servo systems. Features include low cost and high reliability.

SPS Series and PS Series Power Supplies (P72-P76)

Motion Controllers

Leadshine's full line of motion controllers includes single and multi-axis, bus-based and stand-alone controllers. Available interface options for international markets include PCI, USB, RS232 and Ethernet for the moment. Leadshine's controllers provide high speed performance and can handle many modes of motion such as point-to-point positioning, jogging, linear and circular interpolation, continuous interpolation and helix interpolation.

AC & DC Servos

Leadshine's brushless servos include ACS and ACH series DSP-based fully digital servo drives and ACM and BLM series brushless AC and DC servo motors. Because of their high performance and highly competitive price, they are ideal for replacing many popular AC servo drives available on the market.

Leadshine's brush servos include DCS series DSP-based fully digital servo drives and DCM series brush servo motors. The drives support command inputs of step and direction, analog input. Whether your application requires torque mode operation, accurate speed / velocity control or positioning, you may find the right drive to meet your requirements.

Highly Cost-effective Brushless Servos (P45-P58)

Innovative DC Servo Products (P59 - P71)

PCI-Bus, PC104 and Stand-alone Motion Controllers (P77-P92)

Product Catalog 2010 - 2012 Leading Technology

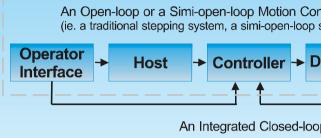
Stepping Drives

Selection Guide — — — — — 3
DM Series Digital Stepping Drives — 5
DM320C — — — — 9
DM422C — — — — — 10
DM432C — — — — — 11
DM442 — — — — — -12
DM556 — — — — — 13
DM856 — — — — — 14
DM870 — — — — — ·15
3DM683 — — — — — 16
M Series Analog Stepping Drives — 17
M542 — — — — — — — — 20
M550 — — — — — — — — 21
M760 — — — — — — — — 22
M860 V5.0 — — — — — — 23
M880A — — — — — -24
MA860 — — — — — -25
MA860H— — — — 26
Other Stepping Drives
M415B — — — — — — -27
ND2282 — — — — — 28

Stepping Motors

Selection Guide — — — 3 ⁻	1
2-phase Stepping Motors	
35/39 HSxx Series — — — 33	3
42HSxx Series — — — 34	4
57HSxx Series — — — 38	ō
86HSxx Series — — — 38	3
110HSxx Series — — — 33	7
130HSxx Series — — — 38	3
3-phase Stepping Motors	
573Sxx Series — — — 39	9
863Sxx Series — — — 40	С
Speed-Torque Curves — — — - 4	1

		-		
		S of the st	Storal State	
	salaria Constant	ere all all all all all all all all all al		
1		6.5 01.01 		
N.		ene [5]		


AC and DC Servos

Brushless Servos — — — — 45
ACS806 — — — — — 49
ACS606 — — — — — 51
ACS306 — — — — 53
ACM Series AC Servo Motors — 55
BLM Series Brushless DC Servo Motors 57
Brush Servos — — — — — 59
DCS303 — — — — 63
DCS810 — — — — — 65
DCS810S 67
DCM Series DC Servo Motors — 69

Introduction to Motion Control Shining Value

Basic Components of Motion Control System

Many different components are used in a variety of combinations to create a modern motion control system. Usually, the system will be comprised of the following basic elements: controller, drive/amplifier, actuator. And for a more integrated motion control system will be comprised of feedback, operator interface and host, besides elements mentioned above. A simplified block diagram of a motion control system would appear as shown below.

* Operator Interface and Host

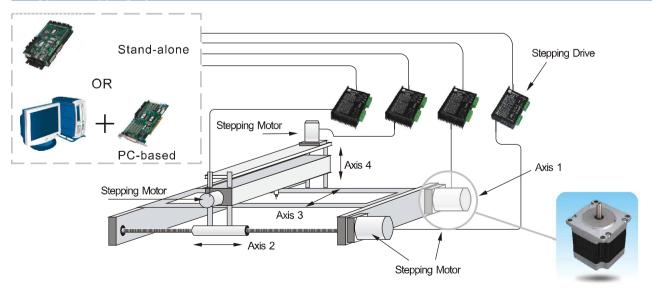
Operator interface and host are/is present to input control logic, modify programs, or provide real time operations, such as system shut down or schedule changes.

* Controller

The controller acts as brain of the system by taking the desired target positions and motion profiles and creating the trajectories for the motors to follow. It will include a means of entering a set of instructions or code into its memory which are then translated into a series of electrical pulses or analog signals and output to a drive for controlling some type of actuator.

* Drive/Amplifier

The drive/amplifier receives the signals from the controller and generate the current required to drive or turn the actuator.


* Actuator

The actuator provides the actual physical motion and will be closely coupled to the design characteristics of the drive. The drive/actuator set may be any one of several different design classifications. Typically, but by no means always, they will the form of an electronic drive and an electric motor. Other common means of motion are pneumatic or hydraulic actuators.

* Feedback Device

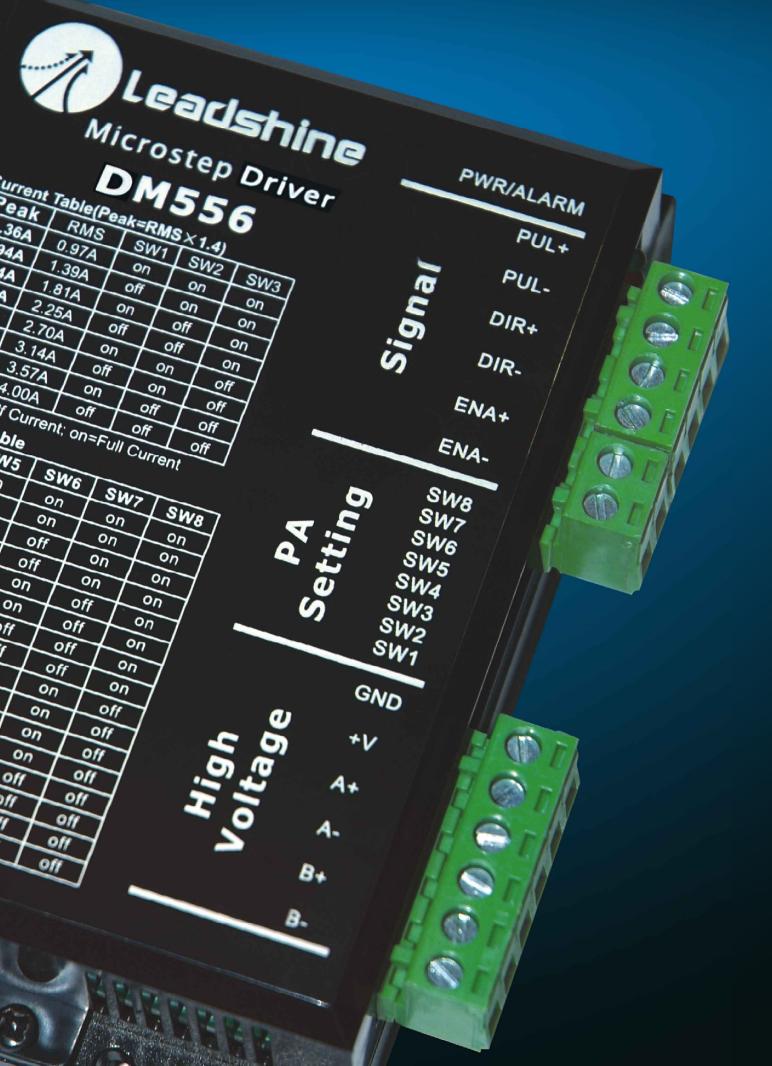
There are a wide variety of feedback devices that are commonly used in motion control systems today which provide information on linear or rotary motion, such as optical encoders, magnetic encoders and resolvers.

A Typical Stepping System

Power Supplies

SPS Series —					—	· 73
PS Series —	—	—	—	—	—	- 75

		flin.	
			30
<u></u>	Binner HAR		
	Summer Statement		


Motion Controllers

Selection Guide — — — — - 79
DMC1000B — — — — 81
DMC2410B — — — — 83
DMC5480 — — — — — - 85
ENC7480 — — — — — — 87
SMC6480 — — — — — - 89
SMC6400B — — — — 91

ntrol System servo system)					
rive/Amplifier	-	Actuator	→	Feedback	
p Motion Control S	Sys	tem			

Selection Guide
DM Series Digital Stepping Drives — 5
DM320C 9
DM422C
DM432C — 11
DM442 — — — — — 12
DM556 — — — — — 13
DM870 — — — — — 14
3DM683 — — — — — — — 15
M Series Analog Stepping Drives — 19
M550 — — — — — 20
M760 — — — — — 21
M860 V5.0 — — — — 22
M880A — — — — — 23
MA550 — — — — — 24
MA860 — — — — — — 25
MA860H — — — — — -26
Other Stepping Drives
M415B — — — — — — 27
ND2282 — — — — — — — 28

Stepping Drives

Microstep Driver

SW2

on

on

Off

Off

on

on

on

on

on

on

on

on

off

off

off

011

011

011

on

Off

on

SW3

on

on

on

High oltage

A+

A.

8+

on

Off

Off

Off

Off

DM556

Current Table(Peak=RMS × 1.4)

on

Of

on

SW6 SW7 SW8

on

on

on

Off

Off

Off

off

on

on

on

on

on

0/1

011

Off

Off

on

Off

1.39A

1.81A

2.25A

2.70A

SW4: off=Half Current; on=Full Current

Off

Off

on

on

Off

Off

on

on

orr

off

on

on

011

on

3.14A

3.57A

3.15A

3.78A

4.40A

5.00A

Pulse/rev Table

Pulse/rev SW5

on

Off

on

Off

on

Off

on

Off

on

Off

on

off

on

011

On

800

1600

3200

6400

12800

25600

51200

1000

2000

4000

5000

8000

10000

Vdc: +20V~

5.60A

Selection Guide for Stepping Drive

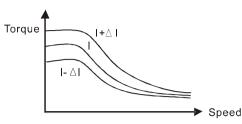
A stepping motor requires an electrical sequencer and it is called a stepping drive. The stepping drive is one of the key components in a stepping system. When you select a stepping drive for the special application, you can follow the following steps. Firstly, you should choose the drive type and determine the drive operating mode. Secondly, choose right supply voltage and output current according with the application and the motor. In the end, you should consider whether the acceptable control signals of the drive are right for those of your motion controller or not. Of course, the price of the chose drive should be acceptable too.

Drive Types

The output torgue and power from a stepping motor are determined by the operating current, motor size, motor heat sinking, motor winding, and the type of the drive used. You can get much different performances from a given motor by choosing different type stepping drives.

There are some commonly-used drive types, such as unipolar constant voltage drive, unipolar L/nR constant voltage drive, unipolar timed bilevel drive, unipolar constant current drive, unipolar constant current drive and bipolar constant current microstepping drive. The highest output power and motor utilization for a given motor is achieved with the bipolar constant current drive. DC-losses is kept at a minimum due to maximum utilization of the copper in the winding and no power losses from leakage inductance and snubbing circuits since every winding only consists of one part.

Bipolar constant current microstepping drive is an improved version of the basic full- and half-step bipolar constant-current drive. Here, the winding currents form a sine/cosine pair. This greatly improves low frequency performances by eliminating overshot movements, ringing, and resonances. Performances at medium and high-stepping rates are close to those of full- and half-step. This drive uses the same power stage as the bipolar constant-current drive, but extra electronics for setting the sine/cosine current levels are used. Microstepping can also increase resolution and step accuracy of the stepping systems.


Supply Voltage and Output Current

Although both regulated and unregulated power supplies can be used to power the drives, unregulated power supplies are preferred due to their ability to withstand current surge. The power supply voltage must be within the drive's allowable operating voltage range. Beyond that, the choice of voltage is dependent on the application and the motor used.

Higher supply voltage can increase motor torque at higher speeds, being helpful for avoiding losing steps. However, higher voltage may cause bigger motor vibration at lower speed, and may also cause over-voltage protection or even drive damage. Therefore, it is suggested to choose only a sufficiently high supply voltage for intended application, and use power supplies with theoretical output voltage of at least 10% below drive's maximum input voltage, leaving room for power fluctuation and back-EMF.

For a given motor, higher drive current will make the motor output more torque, but it also causes more heating in the motor and the drive. Therefore, output current is generally set to be such that the motor will not overheat for long time operation. Phase current rating supplied by motor manufacturer is important when setting a drives output current, however the setting also depends on the leads and motor connections. Since parallel and serial connections of motor coils will significantly change the resulting inductance and resistance, it is important to set drive output current based on motor's phase current and connection types.

Leadshine's stepping drives cover a broad operating voltage range, from 12VDC to 80VDC or 18VAC to 220VAC. And most of Leadshine's stepping drives have over-voltage and over-current protection functions. All of Leadshine's stepping drives use DIP switches to set motor's operating current, and all of them have automatic idle-current reduction function.

Drive Modes

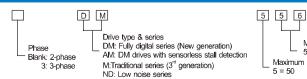
The most common drive modes are full-step, half-step and microstepping.

FULL-STEP MODE: This is the basic stepping driving mode, it offers the simplest control electronics and it is recommended for high and medium frequency operation. At these frequencies, the inertia of the motor and the load smooth out the torque, resulting in less vibration and noise compared to low-speed operation.

HALF-STEP MODE: Half-step gives smoother movement at low step rates compared to full-step and can be used to lower resonances at low speeds. Half-step doubles the system resolution. Observe that for most stepping motors, the step accuracy specification only is valid for 2-phase-on positions. The accuracy is lower and the stop-position hysteresis is larger for 1-phase-on positions.

MICROSTEPPING: The smoothest movement at low frequencies can be achieved with microstepping. If resonancefree movement at low step rates is important, the microstepping drive is the best choice. Microstepping can also be used to increase stop position accuracy beyond the normal motor limits.

Leadshine' stepping drives cover all drive modes. Both our digital stepping drives and analog stepping drives can operate in full-step, half-step and microstepping modes.


Introduction

Since releasing its first stepping drive in 1997, Leadshine has been designing stepping drives to satisfy the requirements of its customers. Today, Leadshine is one of the LARGEST stepping drive manufacturers in the world. Every year, over 600,000 Leadshine stepping drives are implemented in thousands of applications around the world. The applications include CNC routers, laser machines, electronic equipment, packaging equipment, textile equipment, pick-and-place device, and so on.

Currently, Leadshine offers two main series of 2-phase microstepping drives, the digital DM series and analog M series. The high-performance DM drives are based on powerful 32-bit DSP control technology. Their features include anti-resonance, low-speed ripple smoothing, super-low stepping noise, and low motor heating. The low-cost M drives employ precise analog current control and are characterized by superior high-speed torque. relatively low stepping noise, and low motor heating. Leadshine also supplies 3-phase digital and analog stepping drives.

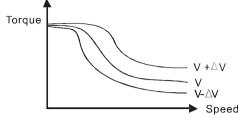
Selection Table													
Dhoco	Corior	Model	Output	Operating	Microstep	Driving Motors	Weight	Size (mm)	Control Signals				
Phase	Series	Model	Current (A)	Voltage (V)	Resolution	(NEMA Size)	(kg)	Size (min)	PUL/DIR; CW/CCW	Single-ended; Differential			
		DM320C	0.3 - 2.0	DC(18-30)	1-512	14, 17, 23	0.09	86*55*20	PUL/DIR; CW/CCW	Single-ended; Differential			
		DM422C	▶ 0.3 - 2.2	DC(18-40)	1-512	14, 17, 23	0.115	86*55*20	PUL/DIR; CW/CCW	Single-ended; Differential			
	DM	DM442	0.5 - 4.2	DC(18-40)	1-512	14, 17, 23	0.19	116*69*26.5	PUL/DIR; CW/CCW	Single-ended; Differential			
		DM556	▶ 0.5 - 5.6	DC(18-50)	1-512	14, 17, 23	0.28	118*75.5*33	PUL/DIR; CW/CCW	Single-ended; Differential			
					DM8700.5 -		DC(18-80)	1-512	17, 23, 34	0.28	118*75.5*33	PUL/DIR; CW/CCW	Single-ended; Differential
2		DM1182	0.5-8.2	AC(80-150)	1-512	34, 42	1.3	202*167*63	PUL/DIR; CW/CCW	Single-ended; Differential			
2		M415B	0.21-1.5	DC(18-40)	1-64	14, 17, 23	0.115	86*55*20	PUL/DIR	Single-ended			
	м	M550 ⊿	☞1.2 - 5.0	DC(20-50)	2-128, 5-125	14, 17, 23	0.28	118*75.5*33	PUL/DIR; CW/CCW	Single-ended; Differential			
	М	M760 ⊿	☞1.45 - 6.0	DC(20-75)	2-256, 5-200	17, 23, 34	0.28	118*75.5*33	PUL/DIR; CW/CCW	Single-ended; Differential			
		M860 ⊿	☞ 2.4 - 7.2	DC(24-80)	2-256, 5-200	17, 23, 34	0.57	151*97*48	PUL/DIR; CW/CCW	Single-ended; Differential			
		M880A	≠ 2.8 - 7.8	DC(24-80)	2-256, 5-200	17, 23, 34	0.57	151*97*48	PUL/DIR; CW/CCW	Single-ended; Differential			
	ND	ND2282	0.45 - 7.8	AC(80-220)	2-50	34, 42	2.0	200*137*81	PUL/DIR; CW/CCW	Single-ended; Differential			
2	DM	3DM683	2.1 - 8.3	DC(18-60)	200-10000s/r	17, 23, 34	0.38	118*75.5*33	PUL/DIR; CW/CCW	Single-ended; Differential			
3	DM	3DM883	2.1 - 8.3	DC(18-80)	200-25600s/r	17, 23, 34	1.05	143*97*48	PUL/DIR; CW/CCW	Single-ended; Differential			
Note: Leadshine will release its AM series digital stepping drives soon. Please visit www.leadshine.com for information about our latest drives.													

Part Number

* This model has UL approved version and non-UL approved version

DM SERIES

M320C IM422C


DM432C

1A860H

M415B

ND2282

1step (1.8° / n for 2-phase)

PbF XXXXX

Maximum output current 56 = 5.6 AMaximum supply voltage

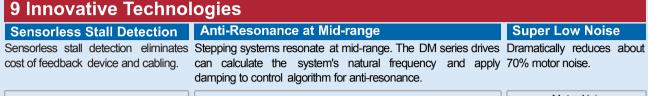
 \prec \prec \times \times \times : Custom-built or Special model number (1 ~ 5 bit) PbF: Pb-free(Lead-free)

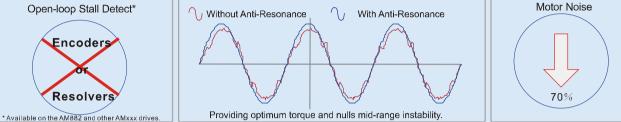
Blank: Non Pb-free

Full-step

Half-step

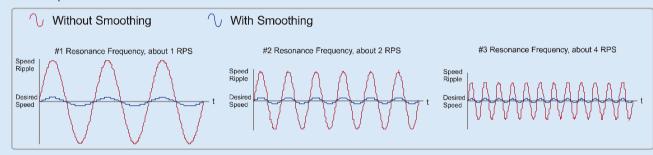
Microstepping


1step (1.8° for 2-phase)


1step (0.9° for 2-phase)

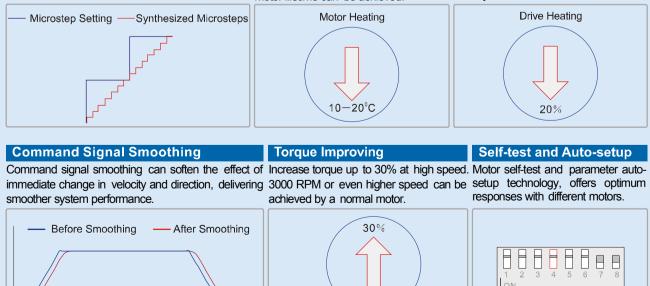
Leadshine

DM Series Fully Digital Stepping Drives


DM320 DM422 DM432 DM432 DM442

Low-speed Ripple Smoothing

Electronic damping for 3 major resonance frequency at low speed range, eliminating undesirable motor speed oscillation and making the DM series deliver unique level of smoothness.



Multi-Stepping Technology

Lower Motor Heating

Lower Drive Heating

Multi-Stepping allows a low resolution step input to Motor temperature is 10°C to 20 °C lower Drive heating is up to 20% lower than a produce a higher microstep output for smooth than using a traditional drive, longer normal driver, offering higher system system performance. stability. motor lifetime can be achieved.

Torque at High Speed

Features

- Sensorless stall detection, eliminates cost of feedback device and cabling.*
- Anti-Resonance, provides optimum torque and nulls mid-range instability
- Self-test and Auto-setup technology, offers optimum responses with different motors

- Multi-Stepping allows a low resolution step input to produce a higher microstep output for smooth system performance Drives for 2-phase and 3-phase stepping motors are available Output current programmable, from 0.3 A or 0.5 A to the maximum values.
- Microstep resolutions programmable, from full-step to 51,200 steps/rev
- Opto-isolated inputs, support single-ended and differential command signals
- Support PUL/DIR and CW/CCW modes
- Built-in motion controller for self-test with trapezoidal velocity profile
- PC based and handheld configuration and tuning tools, including ProTuner and STU-DM.
- Over-current, over-voltage, phase error protections
- 10 latest errors self-record function

Introduction

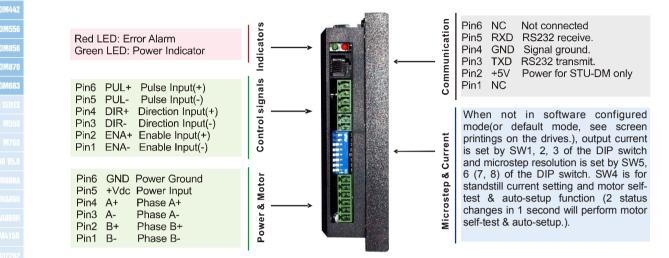
Leadshine's DM series fully digital stepping drives are DSP-based innovative products adopting the latest stepping control technology. The DM series drives include the DM320C, DM422C, DM432C, DM442, DM556, DM870, 3DM683 and DM1182 for the moment. These drives deliver the same level of features and performance as global leading brands, and can significantly improve the performance of stepping systems.

Applications

Suitable for a wide range of stepping motors, from NEMA frame size 8 to 51. Can be used in various kinds of machines, such as laser cutters, laser markers, medical equipment, high precision X-Y tables, measurement devices, pneumatic markers, and so on. Their unique features make them ideal for applications desired for low noise, high smoothness, high precision and high speed performance.

Electrical Specifications

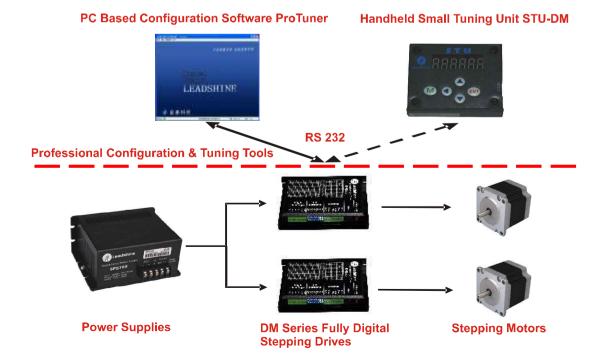
Electrical Speci	ications								
Parameters		Input	ut Voltage (VDC) Output Current (A)						
Model	Min	T	Typical	Мах		Min	Туріса	al	Max
DM320C	+18		+24	+30		0.3	-		2.0
DM422C	+18		+24 +40			0.3	-		2.2
DM432C	+18		+24	4 +40 0.5		0.5	-		3.2
DM442	+18		18 +36 +40			0.5	-		4.2
DM556 🛲	+18	+18		+50	+50 0.5		-		5.6
DM870 🛲	+18		+60	+80		0.5	-		7.0
3DM683	+18		+48	+60		0.5	-		8.3
DM1182	+90 (VA	C) +1 ⁻	10 (VAC)	+150 (VA	AC)	0.5	-	- 8	
Parameters	Pulse Inp	ut Freque	equency (kHz) Logic Signal			rent (mA)	Isolation Resistance (M		
Model	Min	Typical	Max	Min	Typical	Max	Min	Typical	Мах
DM Series	0	-	300**	7	10	16	500	-	-


"This function is available on the AM882 and other AMxxx stepping drives. Visit Leadshine's website for the latest information about our digital stepping drives . ** Those of the DM422C and the DM432C are 75 kHz, and that of the DM442 is 200 kHz

DM SERIES
DM320C
DM422C
DM432C
DM442
DM556
DM856
DM870
3DM683

Pin Assignment and Description

Similar to Leadshine's other drives, the DM series drives also have two connectors. Connector P1 for control signal connections, and connector P2 for power and motor connections. Users do not need to change wiring when upgrading stepping systems. An additional RS232 communication interface of the DM series drives is used for parameter configuration. The follow figure shows a brief description of the connectors and serial interface.

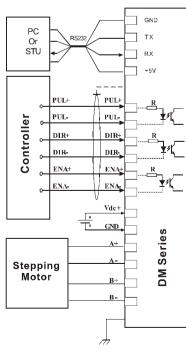

Tins

DM SERIES

- 1. Users should perform motor self-test and auto-setup function when powering up the system (with the motor) for first time, or changing to a new motor different from the old one.
- 2. The SW switches of the DIP switch should be in **DEFAULT mode** if needs the drives operate at software configured mode, including output current and microstep resolution settings. ProTuner and STU-DM can be used for these settings.
- 3. **ONLY ProTuner** can be use to configure advanced settings, such as anti-resonance parameter settings.
- 4. The number times the RED led turns on in one time periodic indicates what protection has been activated. See the relevant user manual.

PC Based and Handheld Configuration & Tuning Tools

The DM series drives have a motor self-test and auto-setup function, and this function is suitable for most of applications. However, if the user wants to configure advanced settings for better performance (i.e. anti-resonance parameters), PC based and handheld configuration & tuning tools, including ProTuner and STU-DM can be supplied to meet different requirements and configuration & tuning environments.

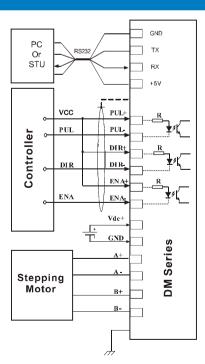

ProTuner (Windows Based Setup Software)

- Upload and Download parameter settings
- PI parameter settings for current loop
- Output current setting
- Microstep resolution setting, from 1 to 512
- PUL/DIR or CW/CCW mode configuration
- DIR logic level setting
- Active edge of pulse signal setting
- Electronic damping coefficient setting
- Anti-resonance parameter settings for 3 resonance area
- · Parameter settings for self motion test (with trapezoidal v profile)
- Read the latest 10 failure events and clear these events
- * 1 PC RS232 interface is necessary.
- ** Leadshine offers a cable for interfacing the drive to an port on the computer. USB-to-RS232 converter is available

STU-DM (Handheld Configuration and Tuning Unit)

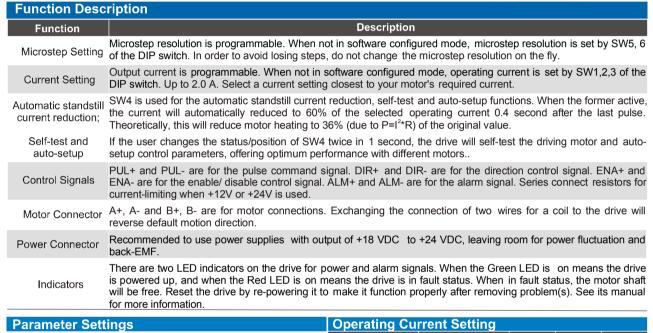
- Upload & Download parameter settings
- PI parameter settings for current loop
- Output current setting
- Microstep resolution setting, from 1 to 512
- PUL/DIR or CW/CCW mode configuration
- DIR logic level setting
- Active edge of pulse signal setting
- Read the latest failure event and clear the event
- * Leadshine offers a special cable for communication between the drive and the STU-DM handheld tuner.

Typical Connections



(a) Differential control signals

		DM SERIES
a ja		DM320C
	And a second	DM422C
	Strepper Conta	DM432C
	PeakCusht [119] Messilied115123[2] Stephopistop [ConnentType Activity day	DM442
	™ PULION ⊂ DW/CDW → Brandings ⊂ Feleralings	DM556
	Arest 10	DM856
4	Phone110) Loweland (V) Cannel UpperLaw (12) Cannel	DM870
elocity 🔤	2nd Tensoronistors Ange 10 Commit Internation	3DM683
	Phais211	M SERIES
	and an and a second and a secon	
	Ango Di	
RS232	Lines	
ole.		
	10 Ka 11000 Fr 200 Heat 11 State	


(b) Single-ended (NPN) control signals

DM320C Introduction

The DM320C is a versatility fully digital stepping drive based on a DSP with advanced control algorithm. It brings a unique level of system smoothness, providing optimum torque and nulls mid-range instability. Motor auto-identification and parameter auto-configuration technology offers optimum response with different motors. The driven motors can run with much lower noise, lower heating, smoother movement than most stepping drives on the market.

Suitable for a wide range of stepping motors, from NEMA8 to NEMA23. It can be used in various kinds of machines, such as medical machines, laser cutters, laser markers, high precision X-Y tables, labelling machines, and so on. Its unique features make the DM320C an ideal solution for applications that require low-speed smoothness.

Microstep resolution and output current are programmable. When not in		RMS Current	SW1	SW2	SW3
software configured mode, the drive uses a 6-bit DIP switch to set	Default (software configured, 0.3-2.0 A)		on	on	on
microstep resolution and motor operating current, as shown below:	0.5 A	0.35 A	off	on	on
Operating Current Setting Microstep Resolution Setting	0.7 A	0.50 A	on	off	on
All ON is software configured All ON is software configured	1.0 A	0.71 A	off	off	on
SW1 SW2 SW3 SW4 SW5 SW6	1.2 A	0.86 A	on	on	off
	1.5 A	1.07 A	off	on	off
Standstill Current (ON haft / OFF full)	1.7 A	1.21 A	on	off	off

Standstill Current (ON haft / OFF full) Self-test and Auto-setup (2 changes in 1 second)

chanical Specifications	Microstep Resolution Setting	Microstep Resolution Setting			
s: mm 1inch = 25.4mm	Steps/rev.	SW5	SW6		
86	Default (software configured, 1-512)	on	on		
79	800	off	on		
╅╫╏┍─────────────────────────	3200	on	off		
	12800	off	off		

2.0 A

1.43 A

off

off

off

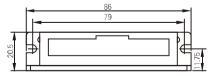
The DM422C is a versatility fully digital stepping drive based on a DSP with advanced control algorithm. It brings a unique level of system smoothness, providing optimum torque and nulls mid-range instability. Motor auto-identification and parameter auto-configuration technology offers optimum response with different motors. The driven motors can run with much lower noise, lower heating, smoother movement than most stepping drives on the market.

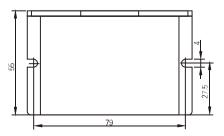
Applications

Suitable for a wide range of stepping motors, from NEMA8 to NEMA23. It can be used in various kinds of machines, such as medical machines, laser cutters, laser markers, high precision X-Y tables, labelling machines, and so on. Its unique features make the DM422C an ideal solution for applications that require low-speed smoothness.

Function Desc	ription
Function	
Microstep Setting	Microstep resolution is programmable. When not of the DIP switch. In order to avoid losing steps,
Current Setting	Output current is programmable. When not in so DIP switch. Up to 2.2A. Select a current setting of
Automatic standstill current reduction;	SW4 is used for the automatic standstill current in the current will automatically reduced to 60%. Theoretically, this will reduce motor heating to 36
Self-test and auto-setup	If the user changes the status/position of SW4 to setup control parameters, offering optimum performance of the setup control parameters of the setup control
Control Signals	OPTO is for the opto-coupler power supply, ty direction control signal. ENA is for the enable/ when +12V or +24V is used.
Motor Connector	A+, A- and B+, B- are for motor connections. I reverse default motion direction.
Power Connector	Recommended to use power supplies with outpublick-EMF.
Indicators	There are two LED indicators on the drive for point is powered up, and when the Red LED is on me will be free. Reset the drive by re-powering it to for more information.

Parameter Settings


Microstep resolution and output current are programmable. When not in software configured mode, the drive uses a 6-bit DIP switch to set microstep resolution, and motor operating current, as shown below:


Operating Current Setting All ON is software configured All ON is software configured							
	SW1	SW2	SW3	SW4	SW5	SW6	

Standstill Current (ON haft / OFF full) Self-test and Auto-setup (2 changes in 1 second)

Mechanical Specifications

Units: mm 1inch = 25.4mm

Med

Units

Description

ot in software configured mode, microstep resolution is set by SW5, 6 do not change the microstep resolution on the fly.

oftware configured mode, operating current is set by SW1,2,3 of the closest to your motor's required current.

reduction, self-test and auto-setup function. When the former active, of the selected operating current 0.4 second after the last pulse. 6% (due to P=I²*R) of the original value.

twice in 1 second, the drive will self-test the driving motor and autoormance with different motors

vpicallv+5V. PUL is for the pulse command signal. DIR is for the disable control signal. Series connect resistors for current-limiting

Exchanging the connection of two wires for a coil to the drive will

out of +18 VDC to +36 VDC, leaving room for power fluctuation and

ower and alarm signals. When the Green LED is on means the drive eans the drive is in fault status. When in fault status, the motor shaft make it function properly after removing problem(s). See its manual

Operating Current Setting					
Peak Current	RMS Current	SW1	SW2	SW3	
Default (software co	onfigured, 0.3-2.2 A)	on	on	on	
0.5 A	0.35 A	off	on	on	
0.7 A	0.5 A	on	off	on	
1.0 A	0.7 A	off	off	on	
1.3 A	0.9 A	on	on	off	
1.6 A	1.2 A	off	on	off	
1.9 A	1.4 A	on	off	off	
2.2 A	1.6 A	off	off	off	

Microstep Resolution Setting					
Steps/rev.	SW5	SW6			
Default (software configured, 1-512)	on	on			
1600	off	on			
3200	on	off			
6400	off	off			

DM SERIES
DM320C
DM422C
DM432C
DM442
DM556
DM856
DM870
3DM683

DM432C

Introduction

The DM432C is a versatility fully digital stepping drive based on a DSP with advanced control algorithm. It brings a unique level of system smoothness, providing optimum torque and nulls mid-range instability. Motor auto-identification and parameter auto-configuration technology offers optimum response with different motors. The driven motors can run with much lower noise, lower heating, smoother movement than most stepping drives on the market.

Applications

Suitable for a wide range of stepping motors, from NEMA8 to NEMA23. It can be used in various kinds of machines, such as medical machines, laser cutters, laser markers, high precision X-Y tables, labelling machines, and so on. Its unique features make the DM432C an ideal solution for applications that require low-speed smoothness.

Function	Description
Microstep Setting	Microstep resolution is programmable. When not in software configured mode, microstep resolution is set by SW5, 6, 7, 8 of the DIP switch. In order to avoid losing steps, do not change the microstep resolution on the fly.
Current Setting	Output current is programmable. When not in software configured mode, operating current is set by SW1,2,3 of the DIF switch. Up to 3.2 A. Select a current setting closest to your motor's required current.
Automatic standstill current reduction;	SW4 is used for the automatic standstill current reduction, self-test and auto-setup function. When the former active, the current will automatically reduced to 60% of the selected operating current 0.4 second after the last pulse. Theoretically, this will reduce motor heating to 36% (due to $P=I^{2*}R$) of the original value.
Self-test and auto-setup	If the user changes the status/position of SW4 twice in 1 second, the drive will self-test the driving motor and auto- setup control parameters, offering optimum performance with different motors
Control Signals	PUL+ and PUL- are for the pulse command signal. DIR+ and DIR- are for the direction control signal. ENA+ and ENA- are for the enable/disable control signal. Series connect resistors for current-limiting when +12V or +24V is used.
Motor Connector	A+, A- and B+, B- are for motor connections. Exchanging the connection of two wires for a coil to the drive will reverse default motion direction.
Power Connector	Recommended to use power supplies with output of +18 VDC to +36 VDC, leaving room for power fluctuation and back-EMF.
Indicators	There are two LED indicators on the drive for power and alarm signals. When the Green LED is on means the drive is powered up, and when the Red LED is on means the drive is in fault status. When in fault status, the motor shaft will be free. Reset the drive by re-powering it to make it function properly after removing problem(s). See its manual for more information.

Parameter Settings	Operating Current Setting				
Microstep resolution and output current are programmable. When not in		RMS Current	SW1	SW2	SW3
software configured mode, the drive uses an 8-bit DIP switch to set	Default (software co	onfigured, 0.5-3.2 A)	on	on	on
microstep resolution, and motor operating current, as shown below:	1.31 A	0.94 A	off	on	on
Operating Current Setting Microstep Resolution Setting	1.63 A	1.16 A	on	off	on
All ON is software configured All ON is software configured 人	1.94 A	1.39 A	off	off	on
SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8	2.24 A	1.60 A	on	on	Off
5001 5002 5003 5004 5005 5000 5007 5008	2.55 A	1.82 A	off	on	off
Standstill Current (ON haft / OFF full)	2.87 A	2.05 A	on	off	off
Self-test and Auto-setup (2 changes in 1 second)	3.20 A	2.29 A	off	off	off

Microstep Resolution Setting Mechanical Specifications Steps/rev. SW5 SW7 Units: mm 1 inch = 25.4mm Default (software configured, 1-256) on on on 400 off on on 800 on off on 1600 off off on 3200 on on off 6400 off on off 99 12800 on off off 25600 off off off 1000 on on on €⊒ 2000 off on on 4000 on off 0 on 5000 off off on Æ 8000 on on off 10000 off on off 20000 on off off

25000

off

off

off

SW8

on

on

on

on

on

on

on

on

off

off

off

off

off

off

off

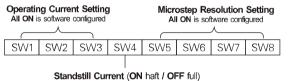
off

DM442

The DM442 is a versatility fully digital stepping drive based on a DSP with advanced control algorithm. It brings a unique level of system smoothness, providing optimum torque, nulls mid-range instability and good high speed performance. Motor auto-identification and parameter auto-configuration technology offers optimum response with different motors. The driven motors can run with much lower noise, lower heating, smoother movement than most stepping drives on the market.

Applications

Α


F

Suitable for a wide range of stepping motors, from NEMA10 to NEMA23. It can be used in various kinds of machines, such as medical machines, laser cutters, laser markers, high precision X-Y tables, labelling machines, and so on. Its unique features make the DM442 an ideal solution for applications that require low-speed smoothness and good high speed performance.

Function Desc	ription
Function	
Microstep Setting	Microstep resolution is programmable. When not in 8 of the DIP switch. In order to avoid losing steps,
Current Setting	Output current is programmable. When it's not in a DIP switch. Up to 4.2 A. Select a current setting cl
Automatic standstill current reduction;	SW4 is used for the automatic standstill current in the current will automatically reduced to 60% c. Theoretically, this will reduce motor heating to 36%
Self-test and auto-setup	If the user changes the status/position of SW4 to setup control parameters, offering optimum perform
Control Signals	PUL+ and PUL- are for the pulse command signa are for the enable/ disable control signal. Series co
Motor Connector	A+, A- and B+, B- are for motor connections. Exch default motion direction.
Power Connector	Recommended to use power supplies with outpuback-EMF.
Indicators	There are two LED indicators on the drive for pow powered up, and when the Red LED is on means be free. Reset the drive by re-powering it to mak more information.

Parameter Settings

Microstep resolution and output current are programmable. When not in software configured mode, the drive uses an 8-bit DIP switch to set microstep resolution, and motor operating current, as shown below:

Self-test and Auto-setup (2 changes in 1 second)

Mechanical Specifications

Units: mm 1 inch = 25.4mm

DM432C

Description

in software configured mode, microstep resolution is set by SW5, 6, 7, , do not change the microstep resolution on the fly.

software configured mode, operating current is set by SW1,2,3 of the closest to your motor's required current.

reduction, self-test and auto-setup function. When the former active, of the selected operating current 0.4 second after the last pulse. % (due to $P=I^{2*}R$) of the original value.

twice in 1 second, the drive will self-test the driving motor and autormance with different motors..

al. DIR+ and DIR- are the for direction control signal. ENA+ and ENAconnect resistors for current-limiting when +12V or +24V is used.

changing the connection of two wires for a coil to the drive will reverse

out of +18 VDC to +36 VDC, leaving room for power fluctuation and

wer and alarm signals. When the Green LED is on means the drive is ns the drive is in fault status. When in fault status, the motor shaft will ake it function properly after removing problem(s). See its manual for

Operating Current Setting					
Peak Current	RMS Current	SW1	SW2	SW3	
Default (software co	onfigured, 0.5-4.2 A)	on	on	on	
1.46 A	1.04 A	off	on	on	
1.91 A	1.36 A	on	off	on	
2.37 A	1.69 A	off	off	on	
2.84 A	2.03 A	on	on	Off	
3.31 A	2.36 A	off	on	off	
3.76 A	2.69 A	on	off	off	
4.20 A	3.00 A	off	off	off	

Microstep Resolution S	etting			
Steps/rev.	SW5	SW6	SW7	SW8
Default (software configured, 1-512)	on	on	on	on
400	off	on	on	on
800	on	off	on	on
1600	off	off	on	on
3200	on	on	off	on
6400	off	on	off	on
12800	on	off	off	on
25600	off	off	off	on
1000	on	on	on	off
2000	off	on	on	off
4000	on	off	on	off
5000	off	off	on	off
8000	on	on	off	off
10000	off	on	off	off
20000	on	off	off	off
25000	off	off	off	off

DM SERIES DM320C DM422C DM432C DM442 DM556 DM856 DM856 DM870 3DM683 M SERIES

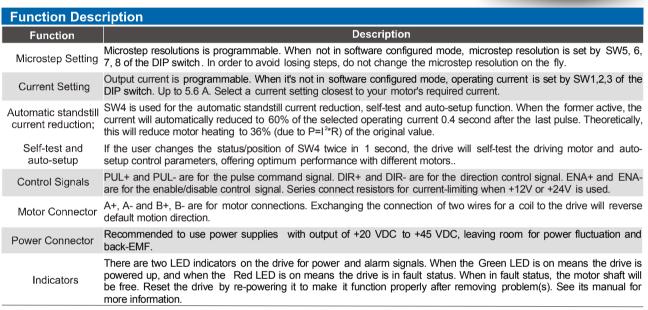
M550 M760

MOONA

MASSO

55.4 mB

ND2282


DM556 cMus

Introduction

The DM556 is a versatility fully digital stepping drive based on a DSP with advanced control algorithm. It brings a unique level of system smoothness, providing optimum torque, nulls mid-range instability and good high speed performance. Motor auto-identification and parameter auto-configuration technology offers optimum response with different motors. The driven motors can run with much lower noise, lower heating, smoother movement than most stepping drives on the market.

Applications

Suitable for a wide range of stepping motors, from NEMA17 to NEMA34. It can be used in various kinds of machines, such as medical machines, laser cutters, laser markers, high precision X-Y tables, labelling machines, and so on. Its unique features make the DM556 an ideal solution for applications that require low-speed smoothness and good high speed performance.

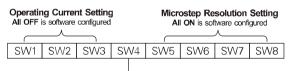
Parameter Settings	Operating Current Setting				
Microstep resolution and output current are programmable. When not in	Peak Current	RMS Current	SW1	SW2	SW3
software configured mode, the drive uses an 8-bit DIP switch to set	Default (software co	onfigured, 0.5-5.6 A)	off	off	off
microstep resolution, and motor operating current, as shown below:	2.1 A	1.5 A	on	off	off
Operating Current Setting All OFF is software configured All ON is software configured	2.7 A	1.9 A	off	on	off
All OFF is software configured All ON is software configured	3.2 A	2.3 A	on	on	off
SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8	3.8 A	2.7 A	Off	Off	on
<u> 3001 3002 3003 3004 3003 3000 3007 3008 </u>	4.3 A	3.1 A	on	off	on
Standstill Current (ON haft / OFF full)	4.9 A	3.5 A	off	on	on
Self-test and Auto-setup (2 changes in 1 second)	5.6 A	4.0 A	on	on	on

Mechanical Specifications	Microstep Resolution Se	etting			
Units: mm 1 inch = 25.4mm	Steps/rev.	SW5	SW6	SW7	SW8
	Default (software configured, 1-512)	on	on	on	on
118	400	off	on	on	on
	800	on	off	on	on
	1600	off	off	on	on
37 27 27	3200	on	on	off	on
	6400	off	on	off	on
	12800	on	off	off	on
	25600	off	off	off	on
	1000	on	on	on	off
	2000	off	on	on	off
	4000	on	off	on	off
	5000	off	off	on	off
	8000	on	on	off	off
	10000	off	on	off	off
	20000	on	off	off	off
	25000	off	off	off	off

Production of the second secon

Introduction

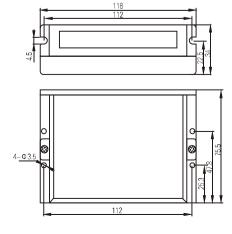
The DM856 is a versatility fully digital stepping drive based on a DSP with advanced control algorithm. It brings a unique level of system smoothness, providing optimum torque, nulls mid-range instability and good high speed performance. Motor auto-identification and parameter auto-configuration technology offers optimum response with different motors. The driven motors can run with much lower noise, lower heating, smoother movement than most stepping drives on the market.


Applications

Suitable for a wide range of stepping motors, from NEMA17 to NEMA34. It can be used in various kinds of machines, such as medical machines, laser cutters, laser markers, high precision X-Y tables, labelling machines, and so on. Its unique features make the DM856 an ideal solution for applications that require low-speed smoothness and good high speed performance.

ription
Microstep resolution is programmable. When not i 8 of the DIP switch. In order to avoid losing steps,
Output current is programmable. When not in soft switch. Up to 5.6 A. Select a current setting closes
SW4 is used for the automatic standstill current recurrent will automatically reduced to 60% of the set this will reduce motor heating to 36% (due to $P=I^2$
If the user changes the status/position of SW4 th setup control parameters, offering optimum perform
PUL+ and PUL- are for the pulse command signa are for the enable/disable control signal. Series co
A+, A- and B+, B- are for motor connections. Excl default motion direction.
Recommended to use power supplies with outp back-EMF.
There are two LED indicators on the drive for pow powered up, and when the Red LED is on means be free. Reset the drive by re-powering it to mak more information.

Parameter Settings


Microstep resolution and output current are programmable. When not in software configured mode, the drive uses an 8-bit DIP switch to set microstep resolution, and motor operating current, as shown below:

Standstill Current (ON haft / OFF full) Self-test and Auto-setup (2 changes in 1 second)

Mechanical Specifications

Units: mm 1 inch = 25.4mm

Leadshine

Description

in software configured mode, microstep resolution is set by SW5, 6, 7, s, do not change the microstep resolution on the fly.

ftware configured mode, operating current is set by SW1,2,3 of the DIP st to your motor's required current.

eduction, self-test and auto-setup function. When the former active, the elected operating current 0.4 second after the last pulse. Theoretically, ²*R) of the original value.

twice in 1 second, the drive will self-test the driving motor and automance with different motors..

al. DIR+ and DIR- are for the direction control signal. ENA+ and ENAonnect resistors for current-limiting when +12V or +24V is used.

changing the connection of two wires for a coil to the drive will reverse

put of +20 VDC to +68 VDC, leaving room for power fluctuation and

wer and alarm signals. When the Green LED is on means the drive is ns the drive is in fault status. When in fault status, the motor shaft will ake it function properly after removing problem(s). See its manual for

Operating Current Setting						
Peak Current	RMS Current	SW1	SW2	SW3		
Default (software co	onfigured, 0.5-5.6 A)	Off	off	off		
2.1 A	1.5 A	on	off	off		
2.7 A	1.9 A	off	on	off		
3.2 A	2.3 A	on	on	off		
3.8 A	2.7 A	off	off	on		
4.3 A	3.1 A	on	Off	on		
4.9 A	3.5 A	Off	on	on		
5.6 A	4.0 A	on	on	on		

Microstep Resolution Setting						
Steps/rev.	SW5	SW6	SW7	SW8		
Default (software configured, 1-512)	on	on	on	on		
400	off	on	on	on		
800	on	off	on	on		
1600	off	off	on	on		
3200	on	on	off	on		
6400	off	on	off	on		
12800	on	off	off	on		
25600	off	off	off	on		
1000	on	on	on	off		
2000	off	on	on	off		
4000	on	off	on	off		
5000	off	off	on	off		
8000	on	on	off	off		
10000	off	on	off	off		
20000	on	off	off	off		
25000	off	off	off	off		

 DM SERIES

 DM320C

 DM422C

 DM432C

 DM4556

 DM683

 DM856

 DM856

 DM856

 DM856

 DM856

 DM856

 DM856

 DM856

 DM856

 DM860

 M660

 M880A

 MA860

 M880A

 M4850

 M4550

DN870 c SL us

Introduction

The DM870 is a versatility fully digital stepping drive based on a DSP with advanced control algorithm. It brings a unique level of system smoothness, providing optimum torque, nulls mid-range instability and good high speed performance. Motor auto-identification and parameter auto-configuration technology offers optimum response with different motors. The driven motors can run with much lower noise, lower heating, smoother movement than most stepping drives on the market.

Applications

Suitable for a wide range of stepping motors, from NEMA17 to NEMA34. It can be used in various kinds of machines, such as medical machines, laser cutters, laser markers, high precision X-Y tables, labelling machines, and so on. Its unique features make the DM870 an ideal solution for applications that require low-speed smoothness and good high speed performance.

	Description
	t in software configured mode, microstep resolution is set by SW5, 6, 7, s, do not change the microstep resolution on the fly.
Output current is programmable. When not in so switch. Up to 7.0 A. Select a current setting close	ftware configured mode, operating current is set by SW1,2,3 of the DIF est to your motor's required current.
	reduction, self-test and auto-setup function. When the former active, the selected operating current 0.4 second after the last pulse. Theoretically 12 *R) of the original value.
If the user changes the status/position of SW4 setup control parameters, offering optimum performance of the status of the statu	twice in 1 second, the drive will self-test the driving motor and auto prmance with different motors
	nal. DIR+ and DIR- are for the direction control signal. ENA+ and ENA connect resistors for current-limiting when +12V or +24V is used.
A+, A- and B+, B- are for motor connections. Ex default motion direction.	changing the connection of two wires for a coil to the drive will reverse
Recommended to use power supplies with ou back-EMF.	tput of +20 VDC to +68 VDC, leaving room for power fluctuation and
powered up, and when the Red LED is on mea	wer and alarm signals. When the Green LED is on means the drive is ns the drive is in fault status. When in fault status, the motor shaft wil ake it function properly after removing problem(s). See its manual for
	8 of the DIP switch. In order to avoid losing step: Output current is programmable. When not in so switch. Up to 7.0 A. Select a current setting close SW4 is used for the automatic standstill current r current will automatically reduced to 60% of the st this will reduce motor heating to 36% (due to P= If the user changes the status/position of SW4 setup control parameters, offering optimum perfor PUL+ and PUL- are for the pulse command sign are for the enable/ disable control signal. Series A+, A- and B+, B- are for motor connections. Ex default motion direction. Recommended to use power supplies with out back-EMF. There are two LED indicators on the drive for pop powered up, and when the Red LED is on mea be free. Reset the drive by re-powering it to motion

Parameter Settings	Operating Cu	rrent Setting			
Microstep resolution and output current are programmable. When not in	Peak Current	RMS Current	SW1	SW2	SW3
software configured mode, the drive uses an 8-bit DIP switch to set	Default (software co	onfigured, 0.5-7.0 A)	off	off	off
microstep resolution, and motor operating current, as shown below:	2.6 A	1.8 A	on	off	off
Operating Current Setting All OFF is software configured All ON is software configured	3.4 A	2.4 A	Off	on	Off
All OFF is software configured All ON is software configured	4.0 A	2.8 A	on	on	off
SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8	4.8 A	3.4 A	off	off	on
3001 3002 3003 3004 3005 3006 3007 3008	5.4 A	3.8 A	on	off	on
Standstill Current (ON haft / OFF full)	6.1 A	4.3 A	off	on	on
Self-test and Auto-setup (2 changes in 1 second)	7.0 A	5.0 A	on	on	on

Mechanical Specifications	Microstep Resolution Setting				
Units: mm 1 inch = 25.4mm	Steps/rev.	SW5	SW6	SW7	SW8
	Default (software configured, 1-512)	on	on	on	on
118 112	400	off	on	on	on
	800	on	off	on	on
	1600	off	off	on	on
33 33 20 20 20 20 20 20 20 20 20 20 20 20 20	3200	on	on	off	on
	6400	off	on	off	on
	12800	on	off	off	on
	25600	off	off	off	on
	1000	on	on	on	off
	2000	off	on	on	off
	4000	on	off	on	off
	5000	off	off	on	off
	8000	on	on	off	off
	10000	off	on	off	off
	20000	on	off	off	off
	25000	off	off	off	off

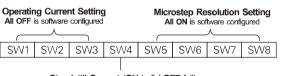
Construction of the second sec

3DM683

Introduction

The 3DM683 is a versatility fully digital 3-phase stepping drive based on a DSP with advanced control algorithm. It brings a unique level of system smoothness, providing optimum torque, nulls mid-range instability and good high speed performance. Motor auto-identification and parameter auto-configuration technology offers optimum response with different motors. The driven motors can run with much lower noise, lower heating, smoother movement than most stepping drives on the market.

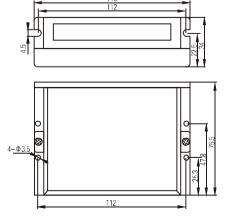
Applications


Suitable for a wide range of stepping motors, from NEMA17 to NEMA34. It can be used in various kinds of machines, such as medical machines, laser cutters, laser markers, high precision X-Y tables, labelling machines, and so on. Its unique features make the 3DM683 an ideal solution for applications that require low-speed smoothness and good high speed performance.

Function Description

Function	
Microstep Setting	Microstep resolution is programmable. When not 8 of the DIP switch. In order to avoid losing steps,
Current Setting	Output current is programmable. When not in so DIP switch. Up to 8.3 A. Select a current setting c
Automatic standstill current reduction;	SW4 is used for the automatic standstill current the current will automatically reduced to 60% Theoretically, this will reduce motor heating to 36%
Self-test and auto-setup	If the user changes the status/position of SW4 t setup control parameters, offering optimum perfor
Control Signals	PUL+ and PUL- are for the pulse command signa are for the enable/ disable control signal. Series ca
Motor Connector	U, V, W are for motor connections. Exchanging direction.
Power Connector	Recommended to use power supplies with outp back-EMF.
Indicators	There are two LED indicators on the drive for pow powered up, and when the Red LED is on mean be free. Reset the drive by re-powering it to mal more information.

Parameter Settings


Microstep resolution and output current are programmable. When not in software configured mode, the drive uses an 8-bit DIP switch to set microstep resolution, and motor operating current, as shown below:

Standstill Current (ON haft / OFF full) Self-test and Auto-setup (2 changes in 1 second)

Mechanical Specifications

Units: mm 1 inch = 25.4mm

Description

: in software configured mode, microstep resolution is set by SW5, 6, 7, s, do not change the microstep resolution on the fly.

software configured mode, operating current is set by SW1,2,3 of the closest to your motor's required current.

t reduction, self-test and auto-setup function. When the former active, of the selected operating current 0.4 second after the last pulse. % (due to P=I²*R) of the original value.

twice in 1 second, the drive will self-test the driving motor and autoprmance with different motors..

al. DIR+ and DIR- are for the direction control signal. ENA+ and ENA-connect resistors for current-limiting when +12V or +24V is used.

g the connection of two wires to the drive will reverse default motion

put of +20 VDC to +48 VDC, leaving room for power fluctuation and

ower and alarm signals. When the Green LED is on means the drive is ins the drive is in fault status. When in fault status, the motor shaft will ake it function properly after removing problem(s). See its manual for

Operating Current Setting						
Peak Current	RMS Current	SW1	SW2	SW3		
Default (software co	onfigured, 0.5-8.3 A)	off	off	Off		
3.2 A	2.3 A	on	off	off		
4.0 A	2.9 A	off	on	off		
4.9 A	3.5 A	on	on	off		
5.7 A	4.1 A	off	off	on		
6.4 A	4.6 A	on	off	on		
7.3 A	5.2 A	off	on	on		
8.3 A	5.9 A	on	on	on		

Microstep Resolution Setting						
Steps/rev.	SW5	SW6	SW7	SW8		
Default (software configured)	on	on	on	on		
400	off	on	on	on		
800	on	off	on	on		
1600	off	off	on	on		
3200	on	on	off	on		
6400	off	on	off	on		
12800	on	off	off	on		
25600	off	off	off	on		
1000	on	on	on	off		
2000	off	on	on	off		
4000	on	off	on	off		
5000	off	off	on	off		
8000	on	on	off	off		
10000	off	on	off	off		
20000	on	off	off	off		
25000	off	off	off	off		

DM SERIES DM320C DM422C DM422C DM42C DM456 DM856 DM856 DM850 M860 M860 M880A MA860 MA860 M4552

1860 V5 F

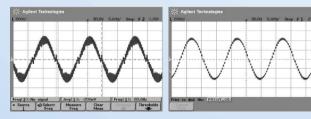
Highly Cost-effective

New M Series Analog Stepping Drives

Features

- The 3rd generation of economical high performance stepping drives
- ◆ Self-adjustment technology, providing optimal performance with different motors
- Precise current control technology with less motor heating
- 7 models, covering 20 VDC to 112VDC or 18 VAC to 80VAC operating voltage ranges
- Excellent high-speed performance
- Smoother movement at low-speed
- Lower motor noise and heating than most analog stepping drives on the market
- Replace or upgrade all old M series drives

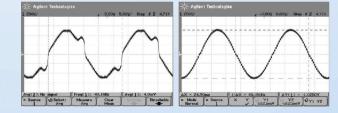
Introduction

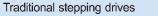

The new M series drives are the latest analog stepping drives Leadshine has developed after more than 12 years R&D experiences. These drives provide better performance and offer higher performance-price ratios. They are the most cost-effective stepping drives on the market

The new M series stepping drives employ Leadshine's innovative patented control technologies. With the adoption of its pioneer "puresinusoidal current control technology" and the latest "self-adjustment technology", those drives can effectively reduce current ripples and mid-range vibration, enabling different motors to run at optimal performance and with lower heating. They can also eliminate drawbacks of difficulty of driving various motors, such as high heating with smaller inductance motors, low high-speed torque with large inductance motors, poor performance under low voltage, and high motor heating under high voltage.

The new M series stepping drives use three digital filters which greatly improve anti-interference performance, and increase the precision and stability of machines.

Application and Position


The new M series includes seven models. DC input models include the M550/M760/M860 V5.0/M880A, and AC & DC input models include the MA550/MA860/MA860H. Suitable to drive 2-phase stepping motors (form NEMA17 to 42) using in industrial and office automation applications. The AC input models cut cost by using a simpler power supply (ie. a transformer without power rectifier).



Much smaller current ripple means lower motor heating (10°C -20°C lower)

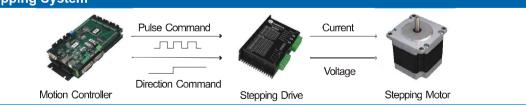
New M series

Pure-sinusoidal current control technology means smoother movement (No creep phenomenon)

Part Number							
M 	A Traditional series (3	A: AC&DC input Blank: DC input generation)	8 = 80	60 num supply volta V	Maximum o 60 = 6.0 A	utput current Blank	ial model number :: Normal version gh voltage
Selection	Table						
Model	Models to be Replaced	Output Current (A)	Supply Voltage (V)	Size (mm) Weight (g)	Driving Motor (NEMA Size)	F	ol Signal Single-ended; Differential
M550	M535, M542, ME542	1.2 to 5.0	20 to 45VDC	118*75.5*34 271	14, 17, 23		Single-ended; Differential
M760	M840, M839, ME742	1.45 to 6.0	20 to 70VDC	118*75.5*34 280	14, 17, 23, 34	PUL/DIR; CW/CCW	Single-ended; Differential
M860 V5.0	M860	2.4 to 7.2	24 to 80VDC	151*97*48 570	17, 23, 34	PUL/DIR; CW/CCW	Single-ended; Differential
MA550	MA535B	1.0 to 5.0	18 to 33VAC	132*76*45 300	14, 17, 23	PUL/DIR; CW/CCW	Single-ended; Differential
M880A 🖅	M860, M880, ME872	2.5 to 7.8	24 to 75VDC	151*97*48 565	23, 34, 42	PUL/DIR; CW/CCW	Single-ended; Differential
MA860	M860, M880, MD882	2.4 to 7.2	24 to 60VAC	151*97*48 570	23, 34	PUL/DIR; CW/CCW	Single-ended; Differential
MA860H		2.4 to 7.2	36 to 80VAC	151*97*52 590	34, 42	PUL/DIR; CW/CCW	Single-ended; Differential

Operating Environment and Other Specifications				
Cooling Natural cooling or forced cooling				
	Environment	Avoid dust, oil fog and corrosive gases		
Operating	Ambient Temperature	0 to +50 °C		
Environment	Humidity	40-90% RH		
	Vibration	5.9m/s² MAX		
Storage Temperature		-20 to 125 °C		

Tips


1. Working temperature for M series drives should below 70°C (158°F); and motor working temperature should below 80°C (176°F). Use automatic idle-current function to reduce drive and motor heating when a motor stops. Use forced cooling to cool the system if necessary.

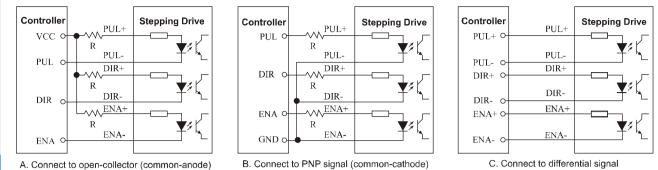
2. To improve anti-interference performance of the system, use twisted pair shielded cable for control signals and correctly ground the system. To prevent noise coupling on pulse/direction signals, pulse/direction signal wires, motor wires and power wires should not be tied up together. Separate them by at least 10 centimeters (4 inches) to avoid disturbing signals generated by a stepping motor, which can easily disturb pulse and direction signals and cause motor position error, system instability and other failures.

3. Don't pull and plug motor or power wires while a stepping drive is powered ON, because there is high current flowing through motor coils (even stopped). Doing that would result in extremely high voltage surge, and could damage the drive.

4. If a power supply serves multiple drives, separately connecting the drives (each in a star arrangements) is recommended instead of daisychain arrangement. Contact Leadshine technical support for detail by phone at 86-755-2641-8447, by fax at 86-755-2640-2718, or by email at tech@leadshine.com.

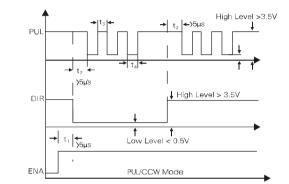
Typical Stepping System

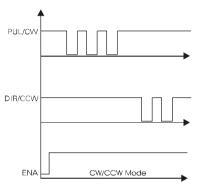
Control Signal Interface and Timing Chart


The M series drives can accept differential and single-ended inputs, including open-collector and PNP signals. The drives have 3 optically isolated logic inputs which are located on connector P1 to accept line driver control signals. The inputs are isolated to minimize or eliminate electrical noises coupling onto the drive control signals. Use line driver control signals to increase noise immunity of a drive in interference environments. In the following figures, connections to open-collector and PNP signals are illustrated. In order to avoid some fault operations and deviations, PUL, DIR and ENA should abide by the timing rules shown in the following timing diagram. Connections and timing diagram of control signals are shown in the following figures.

17

M SERIES
M SERIES M550
M550
M550 M760
M550 M760 M860 V5.0
M550 M760 M860 V5.0 M880A
M550 M760 M860 V5.0 M880A M880A


Control signal connections



A. Connect to open-collector (common-anode)

Series connect resistors for current-limiting when +12V or +24V used. R=1K (>0.25W) if VCC=12V; R=2K (>0.25W) if VCC=24V. Make sure that the current through the opto-coupler is between 7 mA and 16 mA.

In order to avoid faults in operations. PUL, DIR and ENA signals should abide by the timing rules shown in this timing diagram.

Notes:

(a) t1: ENA must be ahead of DIR by at least 5 µ s. Usually, ENA+ and ENA- are NC (not connected), drive is enabled. (b) t2: DIR must be ahead of PUL's effective edge by 5 µ s to ensure correct direction; (c) t3: High level width not less than 1.5μ s (New M series);

(d) t4: Low level width not less than 1.5 µ s (New M series).

Problem Symptoms and Possible Causes

Symptoms	Possible Causes
Cymptollio	No power
	No motion command signal
	DIP switch current or microstep resolution setting is wrong
Motor is not rotating	Fault condition exists
	The drive is disabled
	Drive failure
Martin and the factor of the state of the state	Motor phases may be connected in reverse
Motor rotates in wrong direction	Direction control signal may be in reverse
	Opto-coupler for DIR inputs is broken
	Over voltage protection
Drive is in fault	Over current protection
	Something wrong with motor coil
	Control signal is too weak or interfered
Errotic motor motion	Wrong motor connection
Erratic motor motion	Something wrong with motor coil
	Current setting is too small, losing steps
	Current setting is too small, not enough torque
Mater stalls during appalaration	Motor is undersized for the application
Motor stalls during acceleration	Acceleration is set too high
	Power supply voltage too low
	Inadequate heat sinking / cooling
Excessive motor and drive heating	Automatic current reduction function not being utilized
	Current is set too high
	Supply voltage too high

M542 V2.0

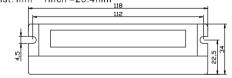
Introduction

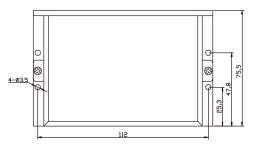
The M542 is a high performance microstepping drive based on pure-sinusoidal current control and self-adjustment (self-adjust current control parameters according to different motors) technologies. Driven motors can run with lower noise, lower heating, smoother movement and have better performance at higher speed than most drives on the market. It is suitable for driving 2-phase and 4-phase hybrid stepping motors from NEMA14 to NEMA34.

Applications

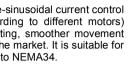
Suitable for a wide range of stepping motors from NEMA size 14 to NEMA34. Widely used in various kinds of machines, such as CNC routers, labelling machines, laser machines, X-Y tables, pick-place devices, and so on. Particularly suitable for the applications require low cost, low noise, low heating and high speed performance.

	Function Descr	iption
	Function	
	Microstep Setting	15 selectable microstep resolutions up to 256,00 losing steps, do not change the microstep on the
	Current Setting	The first three bits (SW1, 2, 3) of the DIP switch current setting closest to your motor's required cu
	Automatic Standstill Current Reduction	SW4 is used for the automatic standstill curre automatically reduced to 60% of the selected op reduce motor heating to 36% (due to $\text{P=I}^{2*}\text{R})$ of t
	Control Signals	PUL+ and PUL- are for the pulse command sign are for the enable/disable control signal. Series c
	Motor Connector	A+, A- and B+, B- are for motor connections. Exclededult motion direction.
	Power Connector	Recommended to use power supplies with the fluctuation and back-EMF.
	Indicators	There are two LED indicators on the drive for por powered up, and when the Red LED is on mean be free. Reset the drive by re-powering it to make


Parameter Settings


This M542 uses an 8-bit DIP switch to set microstep resolution, and motor operating current, as shown below.

Mechanical Specifications


Unist: mm 1inch =25.4mm

M SERIES

Description

00 steps/rev. Set by SW5, 6, 7, 8 of the DIP switch. In order to avoid e fly.

ch are used to set the operating current, which is up to 4.2 A. Select a current.

rent reduction function. When this function is active, the current will operating current 0.4 second after the last pulse. Theoretically, this will the original value.

nal. DIR+ and DIR- are for the direction control signal. ENA+ and ENAconnect resistors for current-limiting when +12V or +24V is used.

xchanging the connection of two wires for a coil to the drive will reverse

heoretical output of +20 VDC to +45 VDC, leaving room for power

ower and alarm signals. When the Green LED is on means the drive is ans the drive is in fault status. When in fault status, the motor shaft will ke it function properly after removing problem(s).

Operating Current Setting							
Peak Current	RMS Current	SW1	SW2	SW3			
1.00 A	0.71 A	on	on	on			
1.46 A	1.04 A	off	on	on			
1.91 A	1.36 A	on	off	on			
2.37 A	1.69 A	off	off	on			
2.84 A	2.03 A	on	on	off			
3.31 A	2.36 A	off	on	off			
3.76 A	2.69 A	on	off	off			
4.20 A	3.00 A	off	off	off			

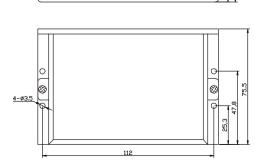
Microstep Resolution Setting						
Steps/rev.	SW5	SW6	SW7	SW8		
400	off	on	on	on		
800	on	off	on	on		
1600	off	off	on	on		
3200	on	on	off	on		
6400	off	on	off	on		
12800	on	off	off	on		
25600	off	off	off	on		
1000	on	on	on	off		
2000	off	on	on	off		
4000	on	off	on	off		
5000	off	off	on	off		
8000	on	on	off	off		
10000	off	on	off	off		
20000	on	off	off	off		
25000	off	off	off	off		

M SERIES

M550 CN^UUS Introduction

The M550 is a high performance microstepping drive based on pure-sinusoidal current control and self-adjustment (self-adjust current control parameters according to different motors) technologies. Driven motors can run with lower noise, lower heating, smoother movement and have better performance at higher speed than most drives on the market. It is suitable for driving 2-phase and 4-phase hybrid stepping motors from NEMA14 to NEMA34.

Applications


Suitable for a wide range of stepping motors from NEMA size 14 to NEMA34. Widely used in various kinds of machines, such as CNC routers, labelling machines, laser machines, X-Y tables, pick-place devices, and so on. Particularly suitable for the applications require low cost, low noise, low heating and high speed performance.

Function	Description
Microstep Setting	15 selectable microstep resolutions up to 256,00 steps/rev. Set by SW5, 6, 7, 8 of the DIP switch. In order to avoid losing steps, do not change the microstep on the fly.
Current Setting	The first three bits (SW1, 2, 3) of the DIP switch are used to set the operating current, which is up to 5.0 A. Select a current setting closest to your motor's required current.
Automatic Standstill Current Reduction	SW4 is used for the automatic standstill current reduction function. When this function is active, the current will automatically reduced to 60% of the selected operating current 0.4 second after the last pulse. Theoretically, this will reduce motor heating to 36% (due to $P=I^{2*}R$) of the original value.
Control Signals	PUL+ and PUL- are for the pulse command signal. DIR+ and DIR- are for the direction control signal. ENA+ and ENA- are for the enable/ disable control signal. Series connect resistors for current-limiting when +12V or +24V is used.
Motor Connector	A+, A- and B+, B- are for motor connections. Exchanging the connection of two wires for a coil to the drive will reverse default motion direction.
Power Connector	Recommended to use power supplies with theoretical output of +20 VDC to +45 VDC, leaving room for power fluctuation and back-EMF.
Indicators	There are two LED indicators on the drive for power and alarm signals. When the Green LED is on means the drive is powered up, and when the Red LED is on means the drive is in fault status. When in fault status, the motor shaft will be free. Reset the drive by re-powering it to make it function properly after removing problem(s).

Parameter Settings **Operating Current Setting** This M550 uses an 8-bit DIP switch to set microstep resolution, and motor operating current, as shown below. Operating Current Setting Microstep Setting A SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 Standstill Current Setting Half / Full Current

Mechanical Specifications Units: mm 1inch = 25.4mm 112

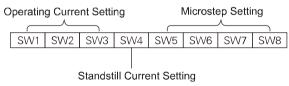
Peak Current	RMS Current	SW1	SW2	SW3		
1.20 A	0.84 A	on	on	on		
1.74 A	1.24 A	off	on	on		
2.27 A	1.62 A	on	off	on		
2.82 A	1.99 A	off	off	on		
3.42 A	2.42 A	on	on	off		
3.94 A	2.81 A	off	on	off		
4.47 A	3.20 A	on	off	off		
5.0 A	3.57 A	off	off	off		
Microstep Resolution Setting						
Steps/rev. S	W5 SW6	SW	7	SW8		

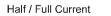
Steps/rev.	SW5	SW6	SW7	SW8
400	off	on	on	on
800	on	off	on	on
1600	off	off	on	on
3200	on	on	off	on
6400	off	on	off	on
12800	on	off	off	on
25600	off	off	off	on
1000	on	on	on	off
2000	off	on	on	off
4000	on	off	on	off
5000	off	off	on	off
8000	on	on	off	off
10000	off	on	off	off
20000	on	off	off	off
25000	off	off	off	off

M760 cm3us

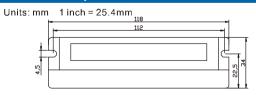
Introduction

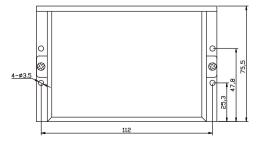
The M760 is a high performance microstepping drive based on pure-sinusoidal current control and self-adjustment (self-adjust current control parameters according to different motors) technologies. Driven motors can run with lower noise, lower heating, smoother movement and have better performance at higher speed than most drives on the market. It is suitable for driving 2-phase and 4-phase hybrid stepping motors from NEMA14 to NEMA34.


Applications


Suitable for a wide range of stepping motors from NEMA14 to NEMA34. Widely used in various kinds of machines, such as CNC routers, labelling machines, laser machines, X-Y tables, pick-place devices, and so on. Particularly suitable for the applications require low cost, low noise, low heating and high speed performance.

	Function Desc	ription
	Function	
	Microstep Setting	16 selectable microstep resolutions up to 512,00 losing steps, do not change the microstep on the
	Current Setting	The first three bits (SW1, 2, 3) of the DIP switch current setting closest to your motor's required cur
	Automatic Standstill Current Reduction	SW4 is used for the automatic standstill current automatically reduced to 60% of the selected op reduce motor heating to 36% (due to $P=I^{2*}R$) of the selected standstructure in the selected op reduce motor heating to 36% (due to $P=I^{2*}R$) of the selected standstructure is
	Control Signals	PUL+ and PUL- are for the pulse command signa are for the enable/disable control signal. Series co
	Motor Connector	A+, A- and B+, B- are for motor connections. Exc default motion direction.
	Power Connector	Recommended to use power supplies with the fluctuation and back-EMF.
	Indicators	There are two LED indicators on the drive for pow powered up, and when the Red LED is on mean be free. Reset the drive by re-powering it to make


Parameter Settings


This M760 uses an 8-bit DIP switch to set microstep resolution, and motor operating current, as shown below.

Mechanical Specifications

M550

Description

00 steps/rev. Set by SW5, 6, 7, 8 of the DIP switch. In order to avoid flv.

h are used to set the operating current, which is up to 6.0A. Select a irrent

ent reduction function. When this function is active, the current will perating current 0.4 second after the last pulse. Theoretically, this will he original value.

al. DIR+ and DIR- are for the direction control signal. ENA+ and ENAconnect resistors for current-limiting when +12V or +24V is used.

changing the connection of two wires for a coil to the drive will reverse

neoretical output of +20 VDC to +68VDC, leaving room for power

ower and alarm signals. When the Green LED is on means the drive is ans the drive is in fault status. When in fault status, the motor shaft will ke it function properly after removing problem(s).

Operating Current Setting							
Peak Current	RMS Current	SW1	SW2	SW3			
1.45 A	1.03 A	on	on	on			
2.08 A	1.47 A	off	on	on			
2.72 A	1.93 A	on	off	on			
3.37 A	2.38 A	off	off	on			
4. 0 5 A	2.86 A	on	on	off			
4.72 A	3.34 A	off	on	off			
5.35 A	3.79 A	on	off	off			
6.0 A	4.24 A	off	off	off			

Microstep Resolution Setting							
Steps/rev.	SW5	SW6	SW7	SW8			
400	on	on	on	on			
800	off	on	on	on			
1600	on	off	on	on			
3200	off	off	on	on			
6400	on	on	off	on			
12800	off	on	off	on			
25600	on	off	off	on			
51200	off	off	off	on			
1000	on	on	on	off			
2000	off	on	on	off			
4000	on	off	on	off			
5000	off	off	on	off			
8000	on	on	off	off			
10000	off	on	off	off			
20000	on	off	off	off			
40000	off	off	off	off			

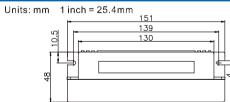
M760

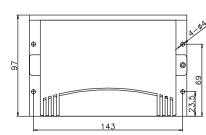
M860 V5.0 Mus

The M860 V5.0 is a high performance microstepping drive based on pure-sinusoidal current control and self-adjustment (self-adjust current control parameters according to different motors) technologies. Driven motors can run with lower noise, lower heating, smoother movement and have better performance at higher speed than most drives on the market. It is suitable for driving 2-phase and 4-phase hybrid stepping motors from NEMA23 to NEMA42.

Applications

Suitable for a wide range of stepping motors from NEMA23 to NEMA42. Widely used in various kinds of machines, such as CNC routers, cutting machines, packing devices, pickplace devices, and so on. Particularly suitable for the applications require low noise and high speed performance.


Function	Description
Microstep Setting	16 selectable microstep resolutions up to 512,00 steps/rev. Set by SW5, 6, 7, 8 of the DIP switch. In order to avoid losing steps, do not change the microstep on the fly.
Current Setting	The first three bits (SW1, 2, 3) of the DIP switch are used to set the operating current, which is up to 7.2 A. Select a setting closest to your motor's required current.
Automatic Standstill Current Reduction	SW4 is used for the automatic standstill current reduction function. When this function is active, the current will automatically reduced to 60% of the selected operating current 0.4 second after the last pulse. Theoretically, this will reduce motor heating to 36% (due to $P=I^{2*}R$) of the original value.
Control Signals	PUL+ and PUL- are for the pulse command signal. DIR+ and DIR- are for the direction control signal. ENA+ and ENA- are for the enable/disable control signal. Series connect resistors for current-limiting when +12V or +24V is used.
Motor Connector	A+, A- and B+, B- are for motor connections. Exchanging the connection of two wires for a coil to the drive will reverse default motion direction.
Power Connector	Recommended to use power supplies with theoretical output of +24 VDC to +68 VDC, leaving room for power fluctuation and back-EMF.
Indicators	There are two LED indicators on the drive for power and alarm signals. When the Green LED is on means the drive is powered up, and when the Red LED is on means the drive is in fault status. When in fault status, the motor shaft will be free. Reset the drive by re-powering it to make it function properly after removing problem(s).


Parameter Settings This M860 V5.0 uses an 8-bit DIP switch to set microstep resolution, and motor operating current, as shown below.

Operating Current Setting					I	Microste	ep Setti ∧	ng
SW1 SW2 SW3 SW			V4	SW5	SW6	SW7	SW8	
ا Standstill Cu			urre	ent Setti	ing			

Half / Full Current

Mechanical Specifications

Operating Current Setting								
Peak Current	RMS Current	SW1	SW2	SW3				
2.40 A	1.70 A	on	on	on				
3.08 A	2.18 A	off	on	on				
3.77 A	2.67 A	on	off	on				
4.45 A	3.15 A	off	off	on				
5.14 A	3.63 A	on	on	off				
5.83 A	4.12 A	off	on	off				
6.52 A	4.61 A	on	off	off				
7.20 A	5.09 A	off	off	off				

Microstep Resolution Setting						
Steps/rev.	SW5	SW6	SW7	SW8		
400	on	on	on	on		
800	off	on	on	on		
1600	on	off	on	on		
3200	off	off	on	on		
6400	on	on	off	on		
12800	off	on	off	on		
25600	on	off	off	on		
51200	off	off	off	on		
1000	on	on	on	off		
2000	off	on	on	off		
4000	on	off	on	off		
5000	off	off	on	off		
8000	on	on	off	off		
10000	off	on	off	off		
20000	on	off	off	off		
40000	off	off	off	off		

Introduction

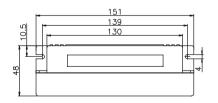
The M880A is a high performance microstepping drive based on pure-sinusoidal current control and self-adjustment (self-adjust current control parameters according to different motors) technologies. Driven motors can run with lower noise, lower heating, smoother movement and have better performance at higher speed than most drives on the market. It is suitable for driving 2-phase and 4-phase hybrid stepping motors from NEMA23 to NEMA42.

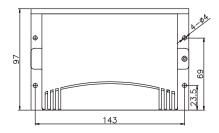
Applications

Suitable for a wide range of stepping motors from NEMA23 to NEMA42. Widely used in various kinds of machines, such as CNC routers, cutting machines, electronic manufacturing, packing, pick-place devices, and so on. Particularly suitable for the applications require low cost, low noise and high speed performance.

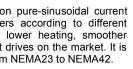
Function Desc	Function Description						
Function							
Microstep Setting	16 selectable microstep resolutions up to 512,00 losing steps, do not change the microstep on the						
Current Setting	The first three bits (SW1, 2, 3) of the DIP switch setting closest to your motor's required current.						
Automatic Standstill Current Reduction	SW4 is used for the automatic standstill curre automatically reduced to 60% of the selected op reduce motor heating to 36% (due to $\text{P=I}^{2*}\text{R})$ of the selected op reduce motor heating to 36% (due to $\text{P=I}^{2*}\text{R})$ of the selected op reduce motor heating to 36% (due to $\text{P=I}^{2*}\text{R})$ of the selected op reduce motor heating to 36% (due to $\text{P=I}^{2*}\text{R})$ of the selected op reduce motor heating to 36% (due to $\text{P=I}^{2*}\text{R})$ of the selected op reduce motor heating to 36% (due to $\text{P=I}^{2*}\text{R})$ of the selected op reduce motor heating to 36% (due to $\text{P=I}^{2*}\text{R})$ of the selected op reduce motor heating to 36% (due to $\text{P=I}^{2*}\text{R})$ of the selected op reduce motor heating to 36% (due to $\text{P=I}^{2*}\text{R})$ of the selected op reduce motor heating to 36% (due to $\text{P=I}^{2*}\text{R})$ of the selected op reduce motor heating to 36% (due to $\text{P=I}^{2*}\text{R})$ of the selected op reduce motor heating to 36% (due to $\text{P=I}^{2*}\text{R})$ of the selected op reduce motor heating to 36% (due to $\text{P=I}^{2*}\text{R})$ of the selected op reduce motor heating to 36% (due to $\text{P=I}^{2*}\text{R})$ of the selected op reduce motor heating to 36% (due to $\text{P=I}^{2*}\text{R})$ of the selected op reduce motor heating to 36% (due to $\text{P=I}^{2*}\text{R})$ of the selected op reduce motor heating to 36% (due to $\text{P=I}^{2*}\text{R})$ of the selected op reduce motor heating to 36% (due to $\text{P=I}^{2*}\text{R})$ of the selected op reduce motor heating to 36\% (due to $\text{P=I}^{2*}\text{R})$ (due to R^{2*}R) of the selected op reduce motor heating to 36\% (due to R^{2*}R) of the selected op reduce motor heating to 36\% (due to R^{2*}R) of the selected op reduce motor heating to 36\% (due to R^{2*}R) of the selected op reduce motor heating to 36\% (due to R^{2*}R) of the selected op reduce motor heating to 36\% (due to R^{2*}R) of the selected op reduce motor heating to 36\% (due to R^{2*}R) (due to $\text{R}^{2*}\text{R}^{2*}\text{R})$ (due to $\text{R}^{2*}\text{R}^{2*}\text{R})$ (due to $\text{R}^{2*}\text{R}^{2*}\text{R}$						
Control Signals	PUL+ and PUL- are for the pulse command signa are for the enable/ disable control signal. Series of						
Motor Connector	A+, A- and B+, B- are for motor connections. Exc default motion direction.						
Power Connector	Recommended to use power supplies with th fluctuation and back-EMF.						
Indicators	There are two LED indicators on the drive for pow powered up, and when the Red LED is on mean be free. Reset the drive by re-powering it to mak						

Parameter Settings


This M880A uses an 8-bit DIP switch to set microstep resolution, and motor operating current, as shown below.



Half / Full Current


Mechanical Specifications

Unist: mm 1 inch = 25.4mm

Description

00 steps/rev. Set by SW5, 6, 7, 8 of the DIP switch. In order to avoid flv.

are used to set the operating current, which is up to 7.8 A.. Select a

ent reduction function. When this function i active, the current will perating current 0.4 second after the last pulse. Theoretically, this will the original value.

al. DIR+ and DIR- are for the direction control signal. ENA+ and ENAconnect resistors for current-limiting when +12V or +24V is used.

changing the connection of two wires for a coil to the drive will reverse

neoretical output of +24 VDC to +68 VDC, leaving room for power

ower and alarm signals. When the Green LED is on means the drive is ans the drive is in fault status. When in fault status, the motor shaft will ke it function properly after removing problem(s).

Operating Current Setting								
Peak Current	RMS Current	SW1	SW2	SW3				
2.8 0 A	2.00 A	on	on	on				
3.50A	2.50 A	off	on	on				
4.20A	3.00 A	on	off	on				
4.90A	3.50 A	off	off	on				
5.70A	4.07 A	on	on	off				
6.40A	4.57 A	off	on	off				
7.00A	5.00 A	on	off	off				
7.80A	5.57 A	off	off	off				

Microstep Resolution Setting							
Steps/rev.	SW5	SW6	SW7	SW8			
400	on	on	on	on			
800	off	on	on	on			
1600	on	off	on	on			
3200	off	off	on	on			
6400	on	on	off	on			
12800	off	on	off	on			
25600	on	off	off	on			
51200	off	off	off	on			
1000	on	on	on	off			
2000	off	on	on	off			
4000	on	off	on	off			
5000	off	off	on	off			
8000	on	on	off	off			
10000	off	on	off	off			
20000	on	off	off	off			
40000	off	off	off	off			

3DM683
M SERIES
M550
M550 M760
M760
M760 M860 V5.0 M880A M8860
M760 M860 V5.0 M880A
M760 M860 V5.0 M880A M8860

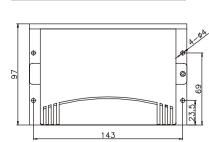
MA860

Introduction

The MA860 is a high performance microstepping drive based on pure-sinusoidal current control and self-adjustment (self-adjust current control parameters according to different motors) technologies. Driven motors can run with lower noise, lower heating, smoother movement and have better performance at higher speed than most drives on the market. It is suitable for driving 2-phase and 4-phase hybrid stepping motors from NEMA23 to NEMA42.

Applications

Suitable for a wide range of stepping motors from NEMA23 to NEMA42. Widely used in various kinds of machines, such as CNC routers, cutting machines, packing devices, pick-place devices, and so on. Particularly suitable for the applications require low cost, low noise, low heating and high speed performance.



Function Desc	ription						
Function	Description						
Microstep Setting	16 selectable microstep resolutions up to 512,00 steps/rev. Set by SW5, 6, 7, 8 of the DIP switch. In order to avoid losing steps, do not change the microstep on the fly.						
Current Setting	The first three bits (SW1, 2, 3) of the DIP switch are used to set the operating current, which is up to 7.2 A. Select a setting closest to your motor's required current.						
Automatic Standstill Current Reduction	SW4 is used for the automatic standstill current reduction function. When this function is active, the current will automatically reduced to 60% of the selected operating current 0.4 second after the last pulse. Theoretically, this will reduce motor heating to 36% (due to $P=l^2 R$) of the original value.						
Control Signals	PUL+ and PUL- are for the pulse command signal. DIR+ and DIR- are for the direction control signal. ENA+ and ENA- are for the enable/ disable control signal. Series connect resistors for current-limiting when +12V or +24V is used.						
Motor Connector	A+, A- and B+, B- are for motor connections. Exchanging the connection of two wires for a coil to the drive will reverse default motion direction.						
Power Connector	Recommended to use power supplies with theoretical output of 18 to 50VAC or +20 to 68VDC, leaving room for power fluctuation and back-EMF.						
Indicators	There are two LED indicators on the drive for power and alarm signals. When the Green LED is on means the drive is powered up, and when the Red LED is on means the drive is in fault status. When in fault status, the motor shaft will be free. Reset the drive by repowering it to make it function properly after removing problem(s).						

Parameter SettingsThis MA860 uses an 8-bit DIP switch to set microstep resolution,
and motor operating current, as shown below.Operating CurrentM860 REF CurrentOperating Current SettingMicrostep Setting3.08 A2.57 ASW1SW2SW3SW4SW5SW6

• •	0112	0110	0001	0000	0110	0007	01
	:	Standst	ill Curre	ent Setti	ing		
		Half / Fi	ull Curre	ent			

Mechanical Specifications Units: mm 1 inch = 25.4mm

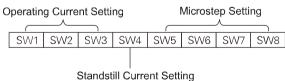
Operating Current Setting								
Peak Current	M860 REF Current	SW1	SW2	SW3				
2.40 A	2.00 A	on	on	on				
3.08 A	2.57 A	off	on	on				
3.77 A	3.14 A	on	off	on				
4.45 A	3.71 A	off	off	on				
5.14 A	4.28 A	on	on	off				
5.83 A	4.86 A	off	on	off				
6.52 A	5.43 A	on	off	off				
7.20 A	6.00 A	off	off	off				

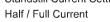
Microstep Resolution Setting							
Steps/rev.	SW5	SW6	SW7	SW8			
400	on	on	on	on			
800	off	on	on	on			
1600	on	off	on	on			
3200	off	off	on	on			
6400	on	on	off	on			
12800	off	on	off	on			
25600	on	off	off	on			
51200	off	off	off	on			
1000	on	on	on	off			
2000	off	on	on	off			
4000	on	off	on	off			
5000	off	off	on	off			
8000	on	on	off	off			
10000	off	on	off	off			
20000	on	off	off	off			
40000	off	off	off	off			

MA860H

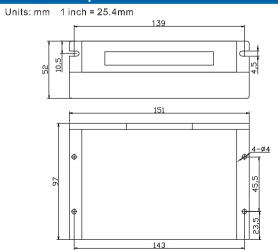
Introduction

The MA860H is a high performance microstepping drive based on pure-sinusoidal current control and self-adjustment (self-adjust current control parameters according to different motors) technologies. Driven motors can run with lower noise, lower heating, smoother movement and have better performance at higher speed than most drives on the market. It is suitable for driving 2-phase and 4-phase hybrid stepping motors from NEMA34 to NEMA42.


Applications


Suitable for a wide range of stepping motors from NEMA34 to NEMA42. Widely used in various kinds of machines, such as CNC routers, cutting machines, packing devices, pick-place devices, and so on. Particularly suitable for the applications require low noise, low heating and high speed performance.

Function Desc	ription
Function	
Microstep Setting	16 selectable microstep resolutions up to 512,00 losing steps, do not change the microstep on the
Current Setting	The first three bits (SW1, 2, 3) of the DIP switch setting closest to your motor's required current.
Automatic Standstill Current Reduction	SW4 is used for the automatic standstill curre automatically reduced to 60% of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$) of the selected op reduce motor heating to 36% (due to $P=1^{2*}R$
Control Signals	PUL+ and PUL- are for the pulse command signa are for the enable/ disable control signal. Series of
Motor Connector	A+, A- and B+, B- are for motor connections. Exc default motion direction.
Power Connector	Recommended to use power supplies with theo power fluctuation and back-EMF.
Indicators	There are two LED indicators on the drive for pow powered up, and when the Red LED is on mean be free. Reset the drive by repowering it to make


Parameter Settings

This MA860H uses an 8-bit DIP switch to set microstep resolution, and motor operating current, as shown below.

Mechanical Specifications

Description

00 steps/rev. Set by SW5, 6, 7, 8 of the DIP switch. In order to avoid e fly.

a are used to set the operating current, which is up to 7.2 A.. Select a

rent reduction function. When this function is active, the current will perating current 0.4 second after the last pulse. Theoretically, this will the original value.

nal. DIR+ and DIR- are for the direction control signal. ENA+ and ENA-connect resistors for current-limiting when +12V or +24V is used.

changing the connection of two wires for a coil to the drive will reverse

pretical output of 24 to 80VAC or + 36 to 112VDC, leaving room for

There are two LED indicators on the drive for power and alarm signals. When the Green LED is on means the drive is powered up, and when the Red LED is on means the drive is in fault status. When in fault status, the motor shaft will be free. Reset the drive by repowering it to make it function properly after removing problem(s).

Operating Current Setting								
Peak Current	M860 REF Current	SW1	SW2	SW3				
2.40 A	2.00 A	on	on	on				
3.08 A	2.57 A	off	on	on				
3.77 A	3.14 A	on	off	on				
4.45 A	3.71 A	off	off	on				
5.14 A	4.28 A	on	on	off				
5.83 A	4.86 A	off	on	off				
6.52 A	5.43 A	on	off	off				
7.20 A	6.00 A	off	off	off				

Microstep Resolution Setting								
Steps/rev.	SW5	SW6	SW7	SW8				
400	on	on	on	on				
800	off	on	on	on				
1600	on	off	on	on				
3200	off	off	on	on				
6400	on	on	off	on				
12800	off	on	off	on				
25600	on	off	off	on				
51200	off	off	off	on				
1000	on	on	on	off				
2000	off	on	on	off				
4000	on	off	on	off				
5000	off	off	on	off				
8000	on	on	off	off				
10000	off	on	off	off				
20000	on	off	off	off				
40000	off	off	off	off				

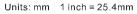
M SERIES
M550
M760
M860 V5.0
M880A
MA860
MA860H
M415B
111-1100

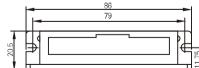
M415B

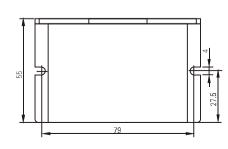
Introduction

The M415B is a micro size high performance microstepping drive based on one of the most advanced technologies in the world today. It's suitable for driving any 2-phase and 4-phase hybrid stepping motors. By using advanced bipolar constant-current chopping technique, it can output more speed and power from the same motor, compared with traditional drives like L/R drivers.

Suitable for a wide range of stepping motors from NEMA10 to NEMA23. Widely used in various kinds of machines, such as CNC routers, cutting machines, packing devices, pickplace devices, and so on. Particularly suitable for the applications require low cost, low noise, low heating.




Function Desc	ription
Function	Description
Microstep Setting	7 selectable microstep resolutions up to 12,800 steps/rev. Set by SW4, 5, 6 of the DIP switch. In order to avoid losing steps, do not change the microstep on the fly.
Current Setting	The first three bits (SW1, 2, 3) of the DIP switch are used to set the operating current, which is up to 1.5 A. Select a setting closest to your motor's required current.
Automatic Standstill Current Reduction	The current will automatically reduced to 60% of the selected operating current 0.4 second after the last pulse. Theoretically, this will reduce motor heating to 36% (due to $P=l^2R$) of the original value.
Control Signals	OPTO is for the opto-coupler power supply, and its typical voltage is +5V. PUL is for the pulse command signal. DIR is for direction control signal. ENA is for the enable/ disable control signal. Series connect resistors for current-limiting when +12V or +24V is used.
Motor Connector	A+, A- and B+, B- are for motor connections. Exchanging the connection of two wires for a coil to the drive will reverse default motion direction.
Power Connector	Recommended to use power supplies with output of +18 to 36VDC, leaving room for power fluctuation and back-EMF.
Indicators	There are two LED indicators on the drive for power and alarm signals. When the Green LED is on means the drive is powered up, and when the Red LED is on means the drive is in fault status. When in fault status, the motor shaft will be free. Reset the drive by re-powering it to make it function properly after removing problem(s).


Ρ	arameter Settings
This	M415B uses a 6-bit DIP switch to set microstep resolution,
and	motor operating current, as shown below.

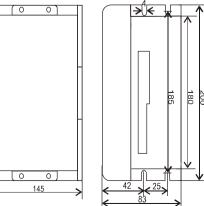
Operating Current Setting			ng Micı	Microstep Setting		
	SW1	SW2	SM3	SW4	SW5	SW6

Mechanical Specifications

Operating Current Setting								
Peak Current	SW1	SW2	SW3					
0.21 A	off	on	on					
0.42 A	on	off	on					
0.63 A	off	off	on					
0.84 A	on	on	off					
1.05 A	off	on	off					
1.26 A	on	off	off					
1.50 A	off	off	off					

Microstep Resolution Setting								
Steps/rev.	SW4	SW5	SW6					
200	on	on	on					
400	off	on	on					
800	on	off	on					
1600	off	off	on					
3200	on	on	off					
6400	off	on	off					
12800	on	off	off					

ND2282


The ND2282 is a high voltage, high performance and low noise microstepping drive based on puresinusoidal current control technology. It's suitable for driving 2-phase and 4-phase hybrid stepping motors. Its advanced bipolar constant-current chopping and pure-sinusoidal current control technology allows coil current to be well controlled with relatively small current ripple, therefore smaller motor noise and less motor heating can be achieved. In addition, the ND2282 has a built-in EMI filter and a built-in braking resistor which can make the drive operate with higher reliability.

Applications

Suitable for a wide range of stepping motors, from NEMA34 to NEMA51 used in large and medium automation machines and equipment, such as engraving machines, labeling machines, cutting machines, laser phototypesetting systems, plotting instruments, pick-place devices, and so on. Particularly adapt to the applications that require low motor noise, low motor heating, high speed and high precision.

Function Desc	ription
Function	
Microstep Setting	16 selectable microstep resolutions up to 25,600 s In order to avoid losing steps, do not change the
Current Setting	Operating current is set by SW5, 6, 7, 8 of the D required current.
Automatic standstill current reduction	The current will automatically reduced to 60% Theoretically, this will reduce motor heating to 36%
Control Signals	PUL+ and PUL- are for the pulse command signa are for the enable/ disable control signal. Series c
Motor Connector	A+, A- and B+, B- are for motor connections. Exc default motion direction.
Power Connector	Recommended to use power supplies with output EMF.
Indicators & Alarm Signal	There are two LED indicators on the drive for pow powered up, and when the Red LED is on mea output will be pulled down from High Level (4.0V- drive by re-powering it to make it function properly
Parameter Sett	inas

drive by re-powering it to make it function properly after removing problem(s).									
Parameter Settings				Operating Current Sett	ina				
The drive uses an 8-bit DIP switch to set microstep resolution, and motor				Peak Current (A)	SW5	SW6	SW7	SW8	
operating current, as shown below	<i>I</i> :			- I	3.28	OFF	ON	OFF	ON
Microstep Resolution Setting	Operatir	ng Current	Setting		3.75	OFF	ON	ON	OFF
				- I	4.22	OFF	ON	ON	ON
SW1 SW2 SW3 SW4	SVV5 SV	V6 SW	7 SW8		4.72	ON	OFF	OFF	OFF
Operating Current Set	tting				5.2	ON	OFF	OFF	ON
Peak Current (A)	SW5	SW6	SW7	SW8	5.78	ON	OFF	ON	OFF
0.7	OFF	OFF	OFF	OFF	6.25	ON	OFF	ON	ON
1.2	OFF	OFF	OFF	ON	6.78	ON	ON	OFF	OFF
1.72	OFF	OFF	ON	OFF	7.31	ON	ON	OFF	ON
2.2	OFF	OFF	ON	ON	7.81	ON	ON	ON	OFF
2.75	OFF	ON	OFF	OFF	8.2	ON	ON	ON	ON
Mechanical Specificat	ions				Microstep Resolution Setting				
Units: mm 1 inch = 25.4n					Steps/rev.	SW1	SW2	SW3	SW4
					200	ON	ON	ON	ON
	\rightarrow	∜⋲₩			400	OFF	ON	ON	ON
					800	ON	OFF	ON	ON
					1600	OFF	OFF	ON	ON
					3200	ON	ON	OFF	ON
I H					6400	OFF	ON	OFF	ON
					12800	ON	OFF	OFF	ON
		185	200 180		25600	OFF	OFF	OFF	ON
					1000	ON	ON	ON	OFF
					2000	OFF	ON	ON	OFF
					4000	ON	OFF	ON	OFF
				5000	OFF	OFF	ON	OFF	
					8000	ON	ON	OFF	OFF
	42	25	•	_	10000	OFF	ON	OFF	OFF
	è i				20000	ON	OFF	OFF	OFF
		-		-	25000	OFF	OFF	OFF	OFF

Description

steps/rev. Microstep resolution is set by SW1, 2, 3, 4 of the DIP switch. microstep resolution on the fly.

DIP switch. Up to 8.2 A. Select a current setting closest to your motor's

of the selected operating current 0.4 second after the last pulse. 6% (due to P=I²*R) of the original value.

nal. DIR+ and DIR- are for the direction control signal. ENA+ and ENAconnect resistors for current-limiting when +12V or +24V is used.

xchanging the connection of two wires for a coil to the drive will reverse

out of 80 VAC to 220 VAC, leaving room for power fluctuation and back-

ower and alarm signals. When the Green LED is on means the drive is eans the drive is in fault status. When in fault status, the alarm signal V-5.0V) to Low Level (0 - 0.5V), and motor shaft will be free. Reset the

ND2282

Stepping Motors

0

Selection Guide — — — —		31						
2-phase Stepping Motors								
35HSxx — — — — —		33						
39HSxx — — — — —		33						
42HSxx — — — — —		34						
57HSxx — — — — —		35						
86HSxx — — — — —		36						
110HSxx — — — — —		37						
130HSxx — — — — —		38						
3-phase Stepping Motors								
573Sxx — — — — —		39						
863Sxx — — — — —		40						
Speed-Torque Curves of 2-phase Motors								
Speed-Torque Curves of 3-phase Motors								

Stepping Motor Basic

35HSx

39HSx

42HSx

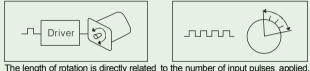
57HSxx

86HSxx

110HSxx

130HSx

573Sxx


863Sx

ST curves

ST curves

A stepping motor is an electromechanical device which converts electrical pulses into discrete mechanical movements. The shaft or spindle of a stepping motor rotates in discrete step increments when electrical command pulses are applied to it in a proper sequence. The motor rotation has several direct relationships to these applied input pulses. The sequence of the applied pulses is directly related to the direction of motor shafts rotation. The speed of the motor shafts rotation is directly related to the frequency of the input pulses and the length of rotation is directly related to the number of input pulses applied.

A stepping motor can be a good choice whenever controlled movement is required. They can be used in applications where you need to control rotation angle, speed, position and synchronism. Because of the inherent advantages, stepping motors have found their places in many different applications, such as CNC routers, laser machines, and so on.

Stepping Motor Types

There are three basic stepping motor types. They are variable-reluctance, permanent-magnet and hybrid.

Variable-reluctance (VR)

This type of motor consists of a soft iron multi-toothed rotor and a wound stator. When the stator windings are energized with DC current the poles become magnetized. Rotation occurs when the rotor teeth are attracted to the energized stator poles.

Permanent Magnet (PM)

Often referred to as a "tin can" or "canstock" motor, the permanent magnet step motor is a low cost and low resolution type motor. PM motors as the name implies have permanent magnets added to the motor structure. The magnetized rotor poles provide an increased magnetic flux intensity and because of this the PM motor exhibits improved torque characteristics when compared with the VR type.

Hybrid (HB)

The hybrid stepping motor provides better performance with respect to step resolution, torque and speed. The hybrid stepping motor combines the best features of both the PM and VR type stepping motors. The rotor is multi-toothed like the VR motor and contains an axially magnetized concentric magnet around its shaft. This further increases the detent, holding and dynamic torgue characteristics of the motor when compared with both the VR and PM types. Generally speaking, the hybrid motor may be the better choice along with reducing cost, for it offers better performance with respect to step resolution, torque and speed.

Normal Selection Steps

You can follow the following steps to choose a stepping motor.

1. Determining the Drive Mechanism Component

Determine the mechanism and required specifications. First, determine certain features of the design, such as mechanism, rough dimensions, distances moved, and positioning period.

2. Calculate the Required Resolution

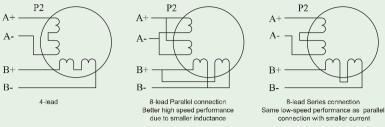
Find the resolution the motor requires. From the required resolution, determine whether a motor only or a geared motor is to be used. The resolution and positioning accuracy of a stepping motor system is affected by several factors - the stepping angle, the selected drive mode (full-step, half-step or microstepping), and the gear rate

3. Determine the Operating Pattern

Determine the operating pattern that fulfills the required specifications. Find the acceleration (deceleration) period and operating pulse speed in order to calculate the acceleration torque

4. Calculate the Required Torque

Calculate the load torque and acceleration torque and find the required torque demanded by the motor.


5. Select the Motor

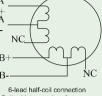
Make a provisional selection of a motor based on required torque. Determine the motor to be used from the speed-torque characteristics. 6 Check the Selected Motor

Confirm the acceleration/deceleration rate and inertia ratio.

Motor Connections

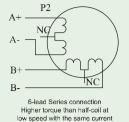
The M series drives can drive any 2-phase, 4-phase hybrid stepping motors, including 4-lead, 6-lead and 8-lead motors. Step angle of the motors can be 1.8 or 0.9 degree. For 6-lead and 8-lead stepping motors, different connections have different performance shown in the following figures.

Leadshine's Stepping Motors


Leadshine offers 2-phase and 3-phase stepping motors from NEMA14 to NEMA51. Made of high quality cold roll sheet copper and anti-high temperature permanent magnet, these stepping motors are highly reliable and generate low motor heating. Because of their nice internal damping characteristics, those stepping motors can run very smoothly and have no obvious resonance area within the whole speed ranges.

Selection Table																
Phase	NEMA Size	Model	Step Angle (°)	# of Leads	Connection	Current/Phase (A)	Holding Torque (Nm)	Length L (mm)	Weight (kg)	Match Drives						
	14	35HS01	1.8	4	-	0.4	0.07	26	0.15	DM320C/DM422C/DM442/M415B						
	16	39HS02	1.8	4	-	0.6	0.22	34	0.2	DM320C/DM422C/DM442/M415B						
		42HS02	1.8	4	-	0.4	0.22	40	0.24	DM320C/DM422C/DM442/M415B						
	17				Parallel	1.4	0.47									
	17	42HS03	1.8	8	Series	0.7	0.47	48	0.34	DM320C/DM422C/DM442/M415B						
					Unipolar	1.0	0.34									
		57HS04	1.8	6	Series	2.0	0.4	41	0.45	DM442/DM556/M550						
					Unipolar	2.8	0.28									
					Parallel	4.2	1.3									
		57HS09	1.8	8	Series	2.1	1.3	54	0.6	DM442/DM556/M550/M760						
					Unipolar	2.8	0.9									
	23				Parallel	4.0	1.8									
		57HS13	1.8	8	Series	2.0	1.8	76	1.0	DM442/DM556/M550/M760						
					Unipolar	2.8	1.3									
2				8	Parallel	5.6	2.2	81	1.15	DM442/DM556/M550/M760						
2		57HS22	1.8		Series	2.8	2.2									
					Unipolar	4.0	1.5									
		86HS35		8	Parallel	4.0	3.5			DM870/M760/M860/M880A						
			1.8		Series	2.0	3.5	65	1.7							
					Unipolar	2.8	2.5									
		86HS45		8	Parallel	6.0	4.5	80	2.3	DM870/DM1182/M860/M880A						
	34		1.8		Series	3.0	4.5									
					Unipolar	4.2	3.2									
					Parallel	6.8	8.5									
		86HS85	86HS85	86HS85	86HS85	86HS85	86HS85	86HS85	1.8	8	Series	3.4	8.5	118	3.8	DM870/DM1182/M880A/ND2282
					Unipolar	4.9	6.0									
	42	110HS12	1.8	4	-	5.0	12	99	5.0	DM1182/ND2282						
	42	110HS20	1.8	4	-	6.5	20	150	8.4	DM1182/ND2282						
	51	130HS27	1.8	4	-	6.0	27	227	13	DM1182/ND2282						
	51	130HS45	1.8	4	-	7.0	45	283	19	DM1182/ND2282						
		573S05	1.2	6	Delta	5.2	0.45	42	0.45	3DM683/3DM883						
	23	573S09	1.2	6	Delta	3.5	0.9	50	0.75	3DM683/3DM883						
3		573S15	1.2	6	Delta	5.8	1.3	76	1.1	3DM683/3DM883						
3		863S22	1.2	6	Delta	5.0	2.3	71	1.7	3DM683/3DM883						
	34	863S42	1.2	6	Delta	5.0	4.3	103	2.9	3DM683/3DM883						
		863S68H	1.2	6	Delta	2.3	6.8	135	4.0	3DM683/3DM883/3ND2283						

Part Number


57	—— <u>н</u> в)——
Motor frame size 57: 57 mm(NEMA size 23)	Motor type HS: 2-phase hyb 3S: 3-phase hyb

P2

Better high speed performance due to smaller inductance

35HSxx	
39HSxx	
42HSxx	
57HSxx	
86HSxx	
110HSxx	
130HSxx	
573Sxx	
863Sxx	
ST curves	
ST curves	

-	0	9	
	٦	_	
H	oldir	ng t	orque
09) = (0.9	N*m

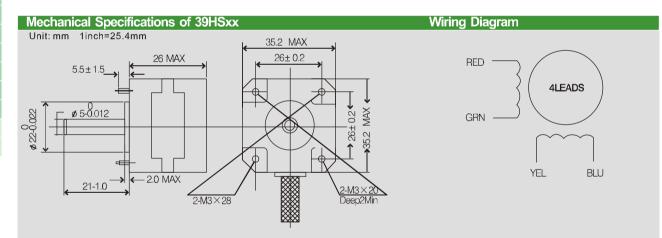
Design number Blank: Standard 0X: Design number

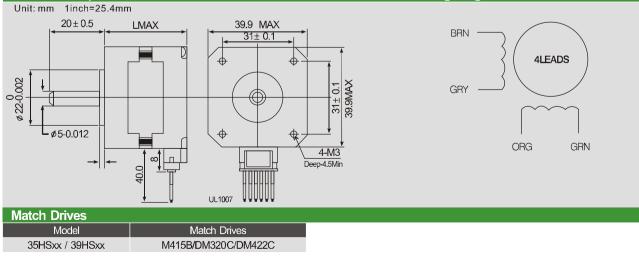
01

Shaft number Blank: Single shaft B: Double shaft

· 🗌

35HSxx/39HSxx Series

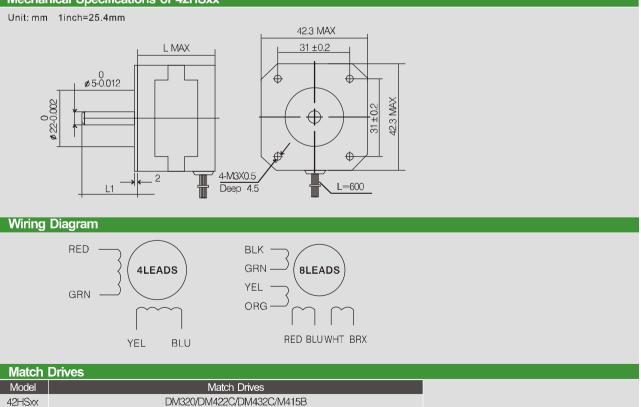

General Specifications									
$\pm5\%$ (full step, no load)									
80 °C Max									
-10 °C — +50 °C									
$100M\Omega$ min. 500VDC									
500VAC for one minute									
0.06 Max. (450g-load)									
0.08 Max. (450g-load)									


Wiring Diagram

Calastian	Telele
Selection	laple

Phase	NEMA Size	Model	Step Angle (°)	# of Leads	Connection	Current/Phase (A)	Holding Torque (Nm)	Length L (mm)	Weight (kg)	Match Drives
	14	35HS01	1.8	4	-	0.4	0.07	26	0.15	DM320C/DM422C/DM442/M415B
2	16	39HS02	1.8	4	-	0.6	0.22	34	0.20	DM320C/DM422C/DM442/M415B

Mechanical Specifications of 39HSxx


42HSxx Series

General Specifications									
Angle Accuracy	\pm 5%(full step, no load)								
Temperature Rise	80 °C Max								
Ambient Temperature	-10 °C — +50 °C								
Insulation Resistance	100MΩmin. 500VDC								
Dielectric Strength	500VAC for one minute								
Shaft Radial Play	0.06 Max. (450g-load)								
Shaft Axial Play	0.08 Max. (450g-load)								

Sele	Selection Table													
Phase	NEMA Size	Model	Step Angle (°)	# of Leads		Current/Phase (A)	Holding Torque (Nm)	Length L (mm)	Weight (kg)	Match Drives				
		42HS02 42HS03	1.8	4	-	0.4	0.22	40	0.24	DM320C/DM422C/DM442/M415B				
2	17				Parallel	1.4	0.47		0.34	DM320C/DM422C/DM442/M415B				
	17		1.8	8	Series	0.7	0.47	48						
					Unipolar	1.0	0.34							

Mechanical Specifications of 42HSxx

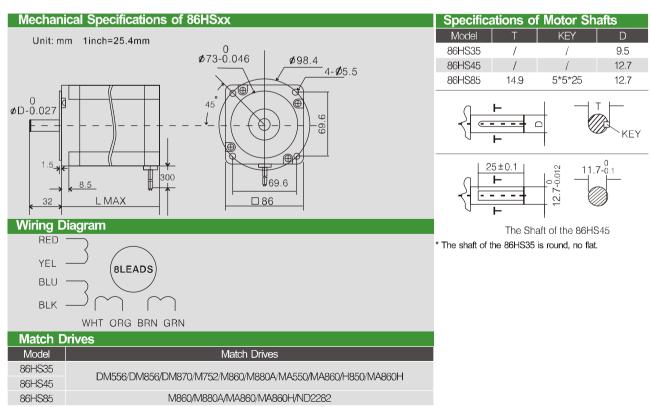
Unit: mm 1inch=25.4mm

Wiring Diagram

BLU	ΠĽD	0.
Match Drives		
DM320/DM422C/DM432C/N	/1415E	3

35HSxx

57HSxx Series


General Specifications

		Accuracy	ecificatic /	±5%(full	l step.	no load)					
	-	erature R		80 °C M							
		ent Tempe		-10 °C — +50 °C					-		
	Insula	tion Resis	stance	100Μ Ωι	min. 5(00VDC					
	Dielec	tric Stren	gth	500VAC	for on	e minute				10	
	Shaft	Radial Pl	ay	0.06 Ma	x. (450	g-load)					
	Shaft	Axial Play	/	0.08 Ma	x. (450	g-load)					
	Sele	ction T	able								
	Phase	NEMA Size	Model	Step Angle (°)	# of Leads	Connection	Current/Phase (A)	Holding Torque (Nm)	Length L (mm)	Weight (kg)	Match Drives
35HSxx			57HS04	1.8	6	Series	2.0	0.4	41	0.45	DM442/DM556/M550
39HSxx						Unipolar	2.8	0.28			
42HSxx						Parallel	4.2	1.3			
			57HS09	1.8	8	Series	2.1	1.3	54	0.6	DM442/DM556/M550/M760
57HSxx						Unipolar	2.8	0.9			
86HSxx	2	23			_	Parallel	4.0	1.8			
110HSxx			57HS13	1.8	8	Series	2.0	1.8	76	1.0	DM442/DM556/M550/M760
130HSxx						Unipolar Parallel	2.8	1.3			
573Sxx			C7U000*	4.0	8	Series	5.6	2.2	04	4.45	
			57HS22*	1.8	8	Unipolar	2.8 4.0	2.2 1.5	81	1.15	DM442/DM556/M550/M760
863Sxx	* The d	iameter of	the shaft of	the 57HS22	2 is 8 m	-	of the others are				
			Specific								
	ι	Jnit: mm	1inch=25	5.4mm			56.4 MAX				
	CONTRACT CONTRA										m, and those of the others are 6.5 mm.
		ng Dia	gram								
	W	ED HT RN YE	6LEADS	RED GRN J		BLU		BLEADS			
	Mat	ch Driv	es								
	Mod	del		N	/latch [Drives		Model			Match Drives
	57HS 57HS		DM422C/	DM432C/D	M556/I	√1752/M542/N	1860/MA550	57HS13 57HS22	DM	556/DM8	56/M752/M542/M860/M880A

86HSxx Series

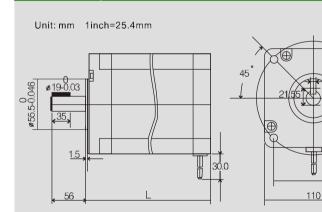
General Specifications									
$\pm5\%$ (full step, no load)									
80 °C Max									
-10 °C — +50 °C									
100M Ω min. 500VDC									
500VAC for one minute									
0.06 Max. (450g-load)									
0.08 Max. (450g-load)									

Sele	Selection Table												
Phase	NEMA Size	Model	Step Angle (°)	# of Leads	Connection	Current/Phase (A)	Holding Torque (Nm)	Length L (mm)	Weight (kg)	Match Drives			
					Parallel	4.0	3.5						
	86HS35	86HS35	1.8	8	Series	2.0	3.5	65	1.7	DM870/M760/M860/M880A			
					Unipolar	2.8	2.5						
					Parallel	6.0	4.5						
2	34	86HS45	1.8	8	Series	3.0	4.5	80	2.3	DM870/DM1182/M860/M880A			
					Unipolar	4.2	3.2						
					Parallel	6.8	8.5						
		86HS85	1.8	8	Series	3.4	8.5	118	3.8	DM870/DM1182/M880A/ND2282			
					Unipolar	4.9	6.0						

86HSxx 110HSxx

110HSxx Series

General Specifications									
Angle Accuracy	$\pm5\%$ (full step, no load)								
Temperature Rise	80 °C Max								
Ambient Temperature	-10 °C — +50 °C								
Insulation Resistance	100M Ω min. 500VDC								
Dielectric Strength	500VAC for one minute								
Shaft Radial Play	0.06 Max. (450g-load)								
Shaft Axial Play	0.08 Max. (450g-load)								



	Sele	Selection Table												
CX.	Phase	NEMA Size	Model	Step Angle (°)	# of Leads	Connection	Current/Phase (A)	Holding Torque (Nm)	Length L (mm)	Weight (kg)	Match Drives			
ĸx			110HS12	1.8	4	-	6.0	12	115	6.0	ND2282/DM1182			
KX.	2	42	110HS20	1.8	4	-	6.0	20	150	8.4	ND2282/DM1182			
~			110HS28	1.8	4	-	6.5	28	201	11.7	ND2282/DM1182			

ø125.7

4**-ø**8.5

Mechanical Specifications of 110HSxx

Wiring Diagram

Match Drives	
Model	Match Drives
110HS12	
110HS20	ND2282/DM1182
110HS28	

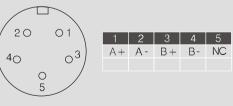
88.9

130HSxx Series

General Specifications								
Angle Accuracy	$\pm 5\%$ (full step, no load)							
Temperature Rise	80 °C Max							
Ambient Temperature	-10 °C — +50 °C							
Insulation Resistance	100M Ω min. 500VDC							
Dielectric Strength	500VAC for one minute							
Shaft Radial Play	0.06 Max. (450g-load)							
Shaft Axial Play	0.08 Max. (450g-load)							
,								

Sele	Selection Table												
Phase	NEMA Size	Model	Step Angle (°)	# of Leads	Connection	Current/Phase (A)	Holding Torque (Nm)	Length L (mm)	Weight (kg)	Match Drives			
2		130HS27	1.8	4	-	6.0	27	227	13	ND2282/DM1182			
	51	130HS33	1.8	4	-	6.0	33	227	13	ND2282/DM1182			
	51	130HS40	1.8	4	-	7.0	40	283	16	ND2282/DM1182			
		130HS45	1.8	4	-	7.0	45	283	19	ND2282/DM1182			

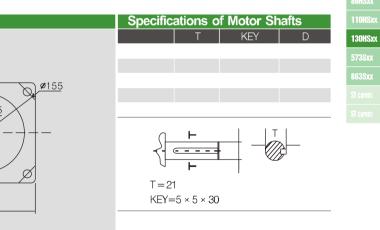
130


Mechanical Specifications of 86HSxx

Unit: mm 1inch=25.4mm 0 ¢ \$10-0 <u>4~ø1</u>

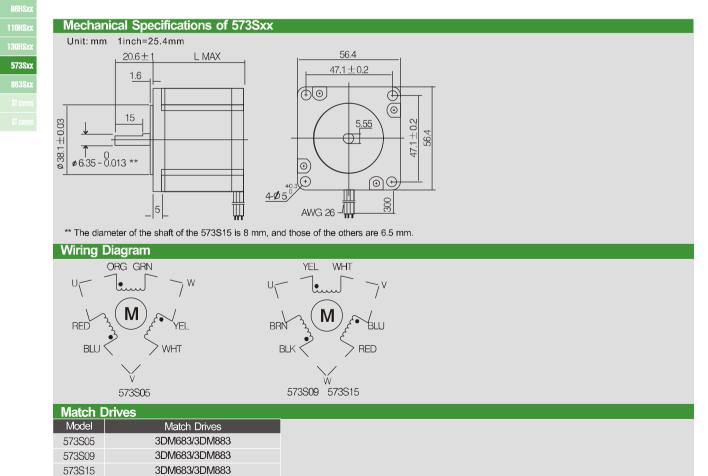
Wiring Diagram

<u>45</u>


1 10

Match	Drives
Model	Match Drives
130HSxx	ND2282/DM1182
130HSxx	ND2282/DM1182

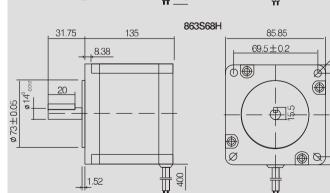
573Sxx Series


General Specifications									
Angle Accuracy	$\pm5\%$ (full step, no load)								
Temperature Rise	80 °C Max								
Ambient Temperature	-10 °C — +50 °C								
Insulation Resistance	100M Ω min. 500VDC								
Dielectric Strength	500VAC for one minute								
Shaft Radial Play	0.06 Max. (450g-load)								
Shaft Axial Play	0.08 Max. (450g-load)								

Selection Table

Phase	NEMA Size	Model	Step Angle	# of Leads	Connection	Current/Phase (A)	Holding Torque (Nm)	Length L (mm)	Weight (kg)	Match Drives
		573S05	1.2	6	Delta	5.2	0.45	42	0.45	3DM683/3DM883
3	23	573S09	1.2	6	Delta	3.5	0.9	50	0.75	3DM683/3DM883
		573S15	1.2	6	Delta	5.8	1.3	76	1.1	3DM683/3DM883

* The diameter of the shaft of the 573S15 is 8 mm, and those of the others are 6.5 mm.

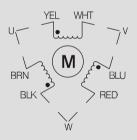

863Sxx Series

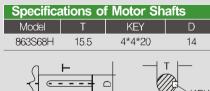
General Specifications										
Angle Accuracy	$\pm 5\%$ (full step, no load)									
Temperature Rise	80 °C Max									
Ambient Temperature	-10 °C — +50 °C									
Insulation Resistance	100M Ω min. 500VDC									
Dielectric Strength	500VAC for one minute									
Shaft Radial Play	0.06 Max. (450g-load)									
Shaft Axial Play	0.08 Max. (450g-load)									

Sele	Selection Table											
Phase	NEMA Size	Model	Step Angle (°)	# of Leads	Connection	Current/Phase (A)	Holding Torque (Nm)	Length L (mm)	Weight (kg)	Match Drives		
3		863S22	1.2	6	Delta	5.0	2.3	71	1.7	3DM683/3DM883		
	23	863S42	1.2	6	Delta	5.0	4.3	103	2.9	3DM683/3DM883		
		863S68H	1.2	6	Delta	2.3	6.8	135	4.0	3DM683/3DM883		

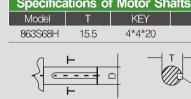
Mechanical Specifications of 863Sxx

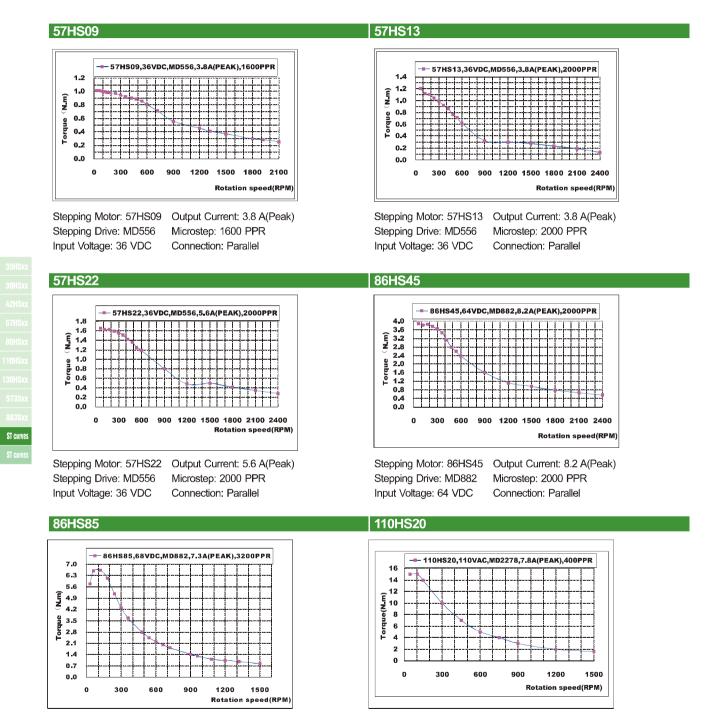
Unit: mm 1inch=25.4mm 863S22, 863S42 31.75 L MAX 85.85 69.5 ± 0.2 L8.38 60 ØÅ 23 Ø Ø Щ ^{€|} 1.52

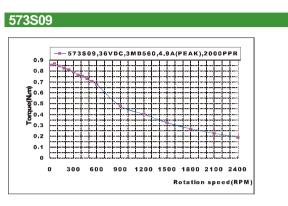

Match I	Drives
Model	Match Drives
863S22	3DM683/3DM883
863S42	3DM683/3DM883
863S68H	3DM683/3DM883



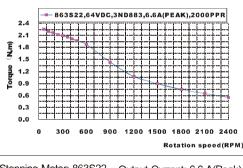
Wiring Diagram





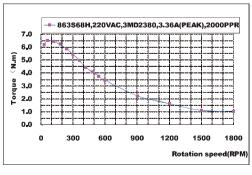

Speed-Torque Curves of 2-phase Stepping Motors

Stepping Motor: 86HS85 Output Current: 7.3 A (Peak) Stepping Drive: MD882 Microstep: 3200 PPR Input Voltage: 68 VDC Connection: Parallel


Stepping Motor: 110HS20 Output Current: 7.8 A (Peak) Stepping Drive: MD2278 Microstep: 400 PPR Input Voltage: 110 VAC Connection: Parallel

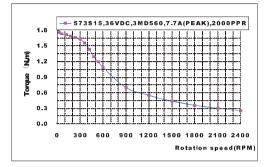
Speed-Torque Curves of 3-phase Stepping Motors

Stepping Motor: 573S09 Output Current: 4.9 A(Peak) Stepping Drive: 3MD560 Microstep: 2000 PPR Input Voltage: 36 VDC Connection: Delta

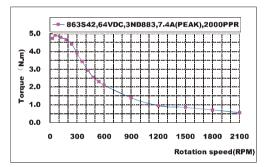

863S22

Stepping Drive: 3ND883 Microstep: 2000 PPR Input Voltage: 64 VDC

Stepping Motor: 863S22 Output Current: 6.6 A(Peak) Connection: Delta


863S68H

Stepping Motor: 863S68H Output Current: 3.36 A(Peak) Stepping Drive: 3MD2380 Microstep: 2000 PPR Input Voltage: 220 VAC Connection: Delta


573S15

Stepping Drive: 3MD560 Microstep: 2000 PPR Input Voltage: 36 VDC

Stepping Motor: 573S15 Output Current: 7.7 A(Peak) Connection: Delta

863S42

Stepping Drive: 3ND883 Microstep: 2000 PPR Input Voltage: 64 VDC

Stepping Motor: 863S42 Output Current: 7.4 A(Peak) Connection: Delta

ST curves

Introduction to ACS Series Drives— - 45
ACS806 49
ACS606 — — — — — — 51
ACS306 — — — — — — 53
ACM Series AC Servo Motors — 55
BLM Series Brushless DC Servo Motors 57
Introduction to DCS Series Drives— - 59
Introduction to DCS Series Drives - 59 DCS303 63
DCS303 — — — — — — 63
DCS303 — — — — — — — 63 DCS810 — — — — — 65

AC and DC Servos

ACS and ACH Series Cost-effective AC Servo Drives

ACS306/ACS606/ACS806/ACH400 ACH750/ACH1000/ACH1500 (Powering 25 - 1500W Servo Motors)

25 to 180 W Brushless DC Servo Motors

ACS606 ACS806

ACH1000 100 to 1500 W AC Servo Motors

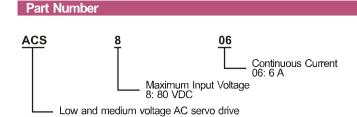
Features:

- Cost-effective, 32-bit DSP control technology
- Input:18 VDC to 220 VAC, Peak Cur:18A, Cont. Cur:7.5 A (Max)
- For 25 to 1500W AC & Brushless DC servo motors
- FOC-SVPWM technologies
- Opto-isolated, single-ended and differential inputs
- PUL/DIR and CW/CCW control signals supported
- Electronic gear rate from 1/255 to 255
- · Self-test function with trapezoidal velocity profile
- PC-based and handheld configuration tools*
- Adjustable following error lock range
- Over-voltage, over-current, encoder error detection
- 10 last errors recorded

Introduction

Leadshine's fully digital ACS and ACH series servo drives are developed with 32-bit DSP control technology based on advanced control algorithm. Because of their high performance and highly competitive price, they are ideal for replacing many popular AC servo drives available on the market. The AC servo drives accept input commands of PUL/DIR signals, so they can be used to upgrade stepping drives to ACS and ACH series servo drives without modifying control systems, offering higher precision, higher speed, lower heating and lower noise performance.

A built-in controller can be used for testing and tuning. PC-based software and handheld configuration and tuning tools can meet different tuning environments or requirements*.


Applications

Suitable for small to medium automation machinery and equipment, such as large format printers, engraving machines, electronics manufacturing equipment, pick and place machines, packing machines, and etc. Particularly suited to applications requiring high speed, high precision, high reliability and low motor noise.

Performance Specifications (with ACM Series Servo Motors)

- Position following error: +/-1 count
- Maximum acceleration speed (No Load): 100 rpm/ms
- Maximum speed: 4000 rpm
- Positioning accuracy: +/-1 count
- Velocity accuracy: (+/- 0.1%) x operating speed
- Input frequency up to 600 kHz
- Minimum speed: 0.1 rpm
- Suitable for 18 VDC to 220 VAC Brushless DC or AC servo motors
- * ACHxxxx servo drives have a on-board configuration and tuning HMI.

Power S	pecification	IS		
Model	Input Voltage	Cont. Cur.	Peak Cur.	Power
ACS306	18 to 30 VDC	6 A	15 A	150 W
ACS606	18 to 60 VDC	6 A	18 A	200 W
ACS806	20 to 80 VDC	6 A	18 A	400 W
ACH400	220 VAC	2 A	3 A	400 W
ACH750	220 VAC	3.7 A	5 A	750 W
ACH1000	220 VAC	5 A	12.5 A	1000 W
ACH1500	220 VAC	7.5 A	12.5 A	1500 W

Electrical Specifications				
Parameters	ACS306	ACS606	ACS806	ACH1000
Maximum Continuous Power	150 W	200 W	400 W	1000 W
Maximum Continuous Current	6 A	6 A	6 A	5 A
Peak Current	15 A	18 A	18 A	12.5 A
Input Voltage	18 to 30 VDC	18 to 60 VDC	20 to 80 VDC	220 VAC
Logical Signal Input Current	7 to 20 mA	7 to 20 mA	7 to 20 mA	7 to 20 mA
Pulse Input Frequency	0 to 250 kHz	0 to 250 kHz	0 to 600 kHz	0 to 500 kHz
Isolation Resistance	500 ΜΩ	500 Μ Ω	500 ΜΩ	500 Μ Ω
Current Provided for Encoder	100 mA	100 mA	100 mA	100 mA
Control Specifications				
Parameters	ACS306	ACS606	ACS806	ACH1000
			Step/Direction	Step/Direction
Command Input	Step/Direction	Step/Direction	CW/CCW	CW/CCW
			\pm 10 V Analog Input	\pm 10 V Analog Input
Enable/Disable Input	Differential	Differential	Differential	Differential
Alarm Signal Output	Isolated OC Output	No	Isolated OC Output	Isolated OC Output
End Limit Input	No	No	Positive & Negative	Positive & Negative
In Position Signal Output	No	No	Isolated OC Output	Isolated OC Output
Encoder Feedback	A, B, Z (Differential)	A, B, Z (Differential)	A, B, Z (Differential)	A, B, Z (Differential)
Hall Effect Sensor Feedback	U, V, W (Single-ended)	U, V, W (Single-ended)	U, V, W (Differential)	U, V, W (Differential)
Encoder Output	No	No	A, B, Z (Differential)	A, B, Z (Differential)
Communication Interface	RS232	RS232	RS232	RS232/RS485
Braking Resistor	No	No	Support External BR	Support External BR

Configuration and Tuning Tools

Specifications

Parameters	ACS306	ACS606	ACS806	ACH1000
PC based tuning software	ProTuner	ProTuner	ProTuner	ProTuner
Handheld tuning unit	STU-ACS	STU-ACS	STU-ACS	on-board HMI

Mechanical Specifications

	pecilications				
Par	ameters	ACS306	ACS606	ACS806	ACH1000
Siz	ze (mm)	$116 \times 69.2 \times 26.5$	118×75.5×34	$166 \times 97 \times 32$	$225 \times 149 \times 75$
We	eight (g)	280	280	430	1900
Powering Mo	tors				
Par	ameters	ACS306	ACS606	ACS806	ACH1000
Powering Motors		18 - 30 VDC, 10-150 W Brushless Servo Motors: BLM57025, BLM57050	18 - 60 VDC, 10-200 W Brushless Servo Motors: BLM57090, BLM57130, BLM57180, 57BL180	20- 80 VDC, 50-400 W Brushless Servo Motors: ACM601V36, ACM602V36(A) ACM602V60(A), ACM604V60	220 VAC, 200-1000 W Brushless Servo Motors
0	- -	4			
Operating	g Environmen	t			
Cooling Natural cooling or			d cooling		
	Environment	Avoid dust, oil fog and corros	sive gases		

Cooling		Natural cooling or Forced cooling
	Environment	Avoid dust, oil fog and corrosive gases
Operating	Ambient Temp.	0 to +50 ℃
Environment	Humidity	40%RH to 90%RH
	Vibration	5.9 m/s² MAX
Storage Temperature		-20℃ to 80℃

45

ACS & ACH

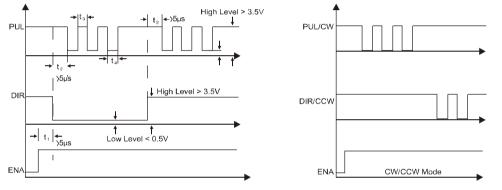
ACH

750

Maximum Output Power 750: 750 W High voltage AC servo drive (220 VAC 1¢/ 3¢) Tips

(a) Although both regulated and unregulated power supplies can be used to power the drives, unregulated power supplies are preferred due to their ability to withstand current surge. Select a power supply with output voltage equal to or approaching the rated voltage of the chosen motor. An external electrolytic capacitor with rated voltage greater than 1.3 times the voltage of power supply should be added between the power input terminals if voltage ripples is greater than 5% of rated voltage of the power supply. Rated power of the power supply should be greater than 1.2 times the power of the servo motor. The greater the power of the power supply the better, especially in applications requiring quick acceleration.

(b) The drive's working temperature should be lower than 70°C (158°F), and motor working temperature should be lower than 80 °C (176 °F). Use forced cooling to cool the system if necessary.

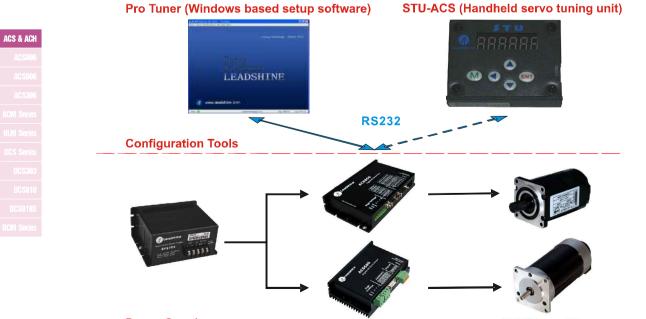

(c) To improve anti-interference performance of the system, use twisted pair shield cable for control signals and correctly ground the system. To prevent noise coupling on pulse/direction signals, pulse/direction signal wires, motor wires and power wires should not be tied up together. Separate them by at least 10 centimeters (4 inches) to avoid signals generated by the motor interfering pulse and direction signals, causing motor position error, system instability and other failures.

(d) Don't pull and plug motor or power wires while a drive is powered ON, high current flowing through motor coils (even when stopped). Pulling or plugging motor or power wires with power on will cause extremely high voltage surge, which may damage the drive.

(e) If a power supply serves several drives, connecting the drives separately (each in a star arrangement) is recommended instead of daisy-chain arrangement.

(f) A rotating motor and load has kinetic energy. When the motor and load stops rotating, the energy must either be stored or dissipated. The drive's capacitors are capable of storing a certain amount of this energy. Any energy beyond this must be dissipated by the braking/regen resistor. A 750hm 100W regen resistor is enough for most of applications using ACM series and BLM series servo motors. A lower resistance and higher power braking should be used if more energy must be dissipated.

(g) PUL, DIR and ENA signals should meet the voltage and timing requirements as set out in the following diagrams:


Notes:

(1) t1: ENA must be ahead of DIR by at least 5 µ s. Usually, ENA+ and ENA- are NC (not connected).

- (2) 12: DIR must be ahead of PUL active edge by at least 5 μ s to ensure correct direction.
- (3) t3: High Level not less than 2 µ s (ACS306, ACS606) or 0.9 µ s (ACS806) or 1.0 µ s (ACH1000).
- (4) t4: Low Level not less than 2 µ s (ACS306, ACS606) or 0.9 µ s (ACS806) or 1.0 µ s (ACH1000).

PC Based and Handheld Configuration and Tuning Tools

Leadshine offers PC based and handheld configuration & tuning tools to meet different requirements and configuration and tuning environments. The user can tune the ACS series drives with two different tuning tools, including ProTuner (Windows based setup software) and STU-ACS (Handheld servo tuning unit)*.

Power Supply ACS& ACH Series Servo Drives ACM/BLM Serles Servo Motors * ACHxxxx servo drives have a on-board configuration and tuning HMI.

ProTuner (Windows Based Configuration Software)

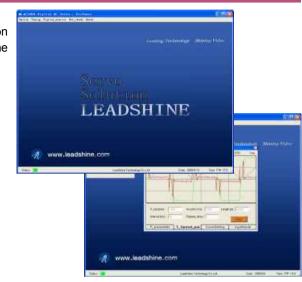
- Upload and Download parameter settings
- Digital oscilloscope for real-time current, velocity, position following error display. Measurements can be taken using the mouse pointer.
- PID parameter settings for position loop
- PI parameter settings for velocity loop
- PI parameter settings for current loop
- Motor parameter configuration
- Electronic gear rate setting from 1/255 to 255
- Position following error range setting
- Encoder resolution setting
- Parameter settings for self motion test (with trapezoidal velocity profile)
- Read the latest 10 failure events and clear the events

Notes:

1. 1 PC RS232 interface is necessary

2. Leadshine offers a cable for interfacing the drive to an RS232 port on the computer. USB-to-Serial converter also available.

STU-ACS (Handheldl Servo Tuning Unit)


- Similar to most HMI of servo drives from other manufacturers
- PID parameter settings for position loop
- Electronic gear rate setting from 1/255 to 255
- Position following error range setting
- Real-time current, velocity, position following error display.
- Parameter settings for self motion test (with trapezoidal velocity profile)
- Read the latest 10 failure events and clear the events

Notes:

1. Leadshine offers a special cable for communication between the drive and STU-ACS handheld tuner.

Orde	er Informatio	n
Part	Model	Description
	ACS306	Digital Brushless DC&AC servo drive for 10W - 150W servo motors, input: 18 - 30 VDC, Cont. Cur: 6A, Peak
AC Servo	ACS606	Digital Brushless DC&AC servo drive for 25W - 200W servo motors, input: 18 - 60 VDC, Cont. Cur: 6A, Peak
Drives	208224	Digital Brushless DC&AC servo drive for 50W - 400W servo motors, input: 18 - 80 VDC, Cont. Cur: 6A, Peak
Direco	ACH1000	Digital Brushless DC&AC servo drive for 200W - 1000W servo motors, input: 220VAC, Cont. Cur. 5A, Peak Cu
	ProTuner	PC based configuration & tuning software (free).
Tuning	STU-ACS	Handheld configuration & tuning unit. Each customer can get one STU-ACS for free.
Tools	USB Cable	USB cable for connection & communication between the servo drive and PC USB interface.
	R232 Cable	RS232 cable for connection & communication between the servo drive and PC RS232 interface.
	ACM601V36	AC Servo Motor, Rated Voltage: 36 VDC, Rated Power: 100W, Shaft Diameter: 8 mm
	ACM602V36	AC Servo Motor, Rated Voltage: 36 VDC, Rated Power: 200W, Shaft Diameter: 11 mm
ACM	ACM602V36A	AC Servo Motor, Rated Voltage: 36 VDC, Rated Power: 200W, Shaft Diameter: 14 mm
Series	ACM602V60	AC Servo Motor, Rated Voltage: 60 VDC, Rated Power: 200W, Shaft Diameter: 11 mm
Motors	ACM602V60A	AC Servo Motor, Rated Voltage: 60 VDC, Rated Power: 200W, Shaft Diameter: 14 mm
	ACM604V60	AC Servo Motor, Rated Voltage: 60 VDC, Rated Power: 400W, Shaft Diameter: 14 mm
	ACM604	AC Servo Motor, Rated Voltage: 220 VDC, Rated Power: 400W, Shaft Diameter: 14 mm
	ACM602V36-01	AC Servo Motor, Rated Voltage: 36 VDC, Rated Power: 200W, Shaft Diameter: 11 mm
	ACM604V60-01	AC Servo Motor, Rated Voltage: 60 VDC, Rated Power: 400W, Shaft Diameter: 14 mm
	BLM57025	Brushless DC Servo Motor, Rated Voltage: 24 VDC, Rated Power: 25W, Shaft Diameter: 6.35 mm
DIM	BLM57050	Brushless DC Servo Motor, Rated Voltage: 24 VDC, Rated Power: 50W, Shaft Diameter: 6.35 mm
BLM Series	BLM57090	Brushless DC Servo Motor, Rated Voltage: 36 VDC, Rated Power: 90W, Shaft Diameter: 6.35 mm
Motors	BLM57130	Brushless DC Servo Motor, Rated Voltage: 36 VDC, Rated Power: 130W, Shaft Diameter: 8 mm
IVIOLOI S	BLM57180	Brushless DC Servo Motor, Rated Voltage: 36 VDC, Rated Power: 180W, Shaft Diameter: 8 mm
	57BL180	Brushless DC Servo Motor, Rated Voltage: 36 VDC, Rated Power: 180W, Shaft Diameter: 8 mm

k Cur: 15A ak Cur: 18A k Cur: 18A Cur: 12.5A

ACS & ACH

ACS806

Cost-effective AC Servo Drives (PVT control modes)

Features:

*Operation Modes: Position, Velocity, Current (Torque)

* PUL/DIR (Position mode) or +/ - 10 V analog Voltage (Velocity, Torque modes) Command Inputs

Models

- * Input Voltage: 20 VDC to 80 VDC
- * Continuous Current 6A, Peak Current: 18A
- * Powers 50 W to 400 W AC Servo Motors;
- * Encoder output

Matched Motors

Power 100 W ACM601V36

- 200 W ACM602V36, ACM602V36A, ACM602V60, ACM602V60A
- 400 W ACM604, ACM604V60

Introduction

Leadshine's ACS806 is a highly cost-effective, fully digital AC servo drive. It has a wide input voltage covering 20 VDC to 80 VDC, and is suitable for 50 W to 400 W AC servo motors. High reliability, compact size and ease of use make the ACS806 an ideal choice for new installations and as replacement for a range of popular drives on the market.

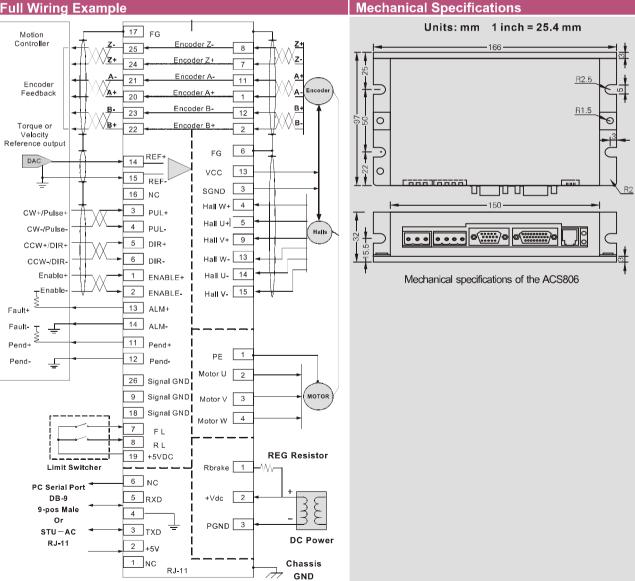
Applications

Suitable for small to medium automation machinery and equipment, such as large format printers, engraving machines, electronics manufacturing equipment, pick and place machines, packing machines, and etc. Particularly suited to applications requiring high speed, high precision, high reliability and low motor noise.

Connections

Comm	nand and	I/O Signal Connector					
Pin.	Name	Description	I/O	Pin.	Name	Description	I/O
1	EN+	Enable signal input+	I	14	+REF	Reference signal input+	1
2	EN-	Enable signal input-	1	15	-REF	Reference signal input -	1
3	PUL+	Pulse signal input +	1	16	NC	Not connected	-
4	PUL-	Pulse signal input -	1	17	FG	Ground terminal for shield	GN
5	DIR+	Direction control signal input +	1	18	SGND	Signal ground	GN
6	DIR-	Direction control signal input -	1	19	+5V	+5V Power supply	0
7	FL	Positive limit signal input	I	20	A+	Encoder Channel A+ Output	0
8	RL	Negative limit signal input	1	21	A-	Encoder Channel A- Output	0
9	SGND	Signal ground	GND	22	B+	Encoder Channel B+ Output	0
10	Pend+	In position signal output +	0	23	B-	Encoder Channel B+ Output	0
11	Pend-	In position signal output -	0	24	Z+	Encoder Channel Z+ Output	0
12	ALM+	Alarm signal output +	0	25	Z-	Encoder Channel Z+ Output	0
13	ALM-	Alarm signal output -	0	26	SGND	Signal ground	GN

RS232 Communication Interface


Pin.	Name	Description	I/O	Pin.	Name	Description	I/O
1	NC	Not connected	-	4	GND	Signal ground	GND
2	+5V	Power for STU-ACS	0	5	RxD	RS232: Receive	
3	TxD	RS232: Transmit	0	6	NC	Not connected	-

nections	;								
Power Connector X1 Motor Connector X2									
Name	Description	I/O	Pin.	Name	Description	I/O			
GND	Power ground	GND	1	PE	Motor case ground	PE			
VDC	DC power Input (18 to 80 VDC)		2	U	Motor phase U	0			
Rbrake	Brake resistor connection (VDC-RBrake)	Ι	3	V	Motor phase V	0			
			4	W	Motor phase W	0			
	r Connec Name GND VDC	NameDescriptionGNDPower groundVDCDC power Input (18 to 80 VDC)	Connector X1NameDescriptionI/OGNDPower groundGNDVDCDC power Input (18 to 80 VDC)I	NameMotorNameDescriptionI/OPin.GNDPower groundGND1VDCDC power Input (18 to 80 VDC)I2RbrakeBrake resistor connection (VDC-RBrake)I3	Motor ConnectNameDescriptionI/OPin.NameGNDPower groundGND1PEVDCDC power Input (18 to 80 VDC)I2URbrakeBrake resistor connection (VDC-RBrake)I3V	Motor Connector X2NameDescriptionI/OPin.NameDescriptionGNDPower groundGND1PEMotor case groundVDCDC power Input (18 to 80 VDC)I2UMotor phase URbrakeBrake resistor connection (VDC-RBrake)I3VMotor phase V			

Motor Feedback Connector

Pin.	Name	Description	I/O	Pin.	Name	Description	I/O
1	EA+	Encoder Channel A+ Input	I	9	HallV+	Hall sensor V+ input	1
2	EB+	Encoder Channel B+ Input		10	HallV-	Hall sensor V- input	
3	EGND	Signal ground	GND	11	EA-	Encoder Channel A- Input	1
4	HallW+	Hall sensor W+ input		12	EB-	Encoder Channel B- Input	1
5	HallU+	Hall sensor U+ input	Ι	13	VCC	+5V @ 100 mA max.	0
6	FG	Ground terminal for shielded	GND	14	HallW-	Hall sensor W- input	1
7	EZ+	Encoder Channel Z+ Input		15	HallU-	Hall sensor U- input	1
8	EZ-	Encoder Channel Z- Input	1				

Full Wiring Example

ACS606 Simple AC and Brushless DC Servo Drive (Operation Mode: Position)

Features:

- * Position Control Mode with Opto-isolated Pulse and Direction Inputs
- * PC-based and Handheld Tuning Tools Available
- * Input Voltage:18 VDC to 60 VDC
- * Continuous Current 6A, Peak Current: 18A
- * Powering 25W to 200 W AC and Brushless DC Servo Motors

Matched Motors

Power	Models
25 W	BLM57025
50 W	BLM57050
90 W	BLM57090
130 W	BLM57130
180 W	BLM57180, 57BL180

Introduction

Leadshine's ACS606 is a simple, fully digital brushless DC/AC servo drive. It features high reliability, compact size and PUL/DIR/ENA input signals that match those used by stepping motor drives, allowing a drop-in upgrade for older systems.

The simple drive supports position control (for velocity or torque control modes, see the ACS806 or ACHxxxx drives) and tuning is accomplished with PC-based or handheld tools. It accepts a wide input voltage range (18 VDC to 60 VDC) and is suitable for driving 25 W to 200 W AC or DC brushless motors.

Applications

Suitable for small to medium automation machinery and equipment, such as large format printers, engraving machines, electronics manufacturing equipment, pick and place machines, packing machines, and etc. Particularly suited to applications requiring high speed, high precision, high reliability and low motor noise.

Con	nection	S					
Comm	nand Sign	al Connector					
Pin.	Name	Description	I/O	Pin.	Name	Description	I/O
1	PUL+	Pulse signal input +	I	4	DIR-	Direction control signal input -	I
2	PUL-	Pulse signal input -		5	EN+	Enable signal input+	1
3	DIR+	Direction control signal input +	I	6	EN-	Enable signal input-	I
-							

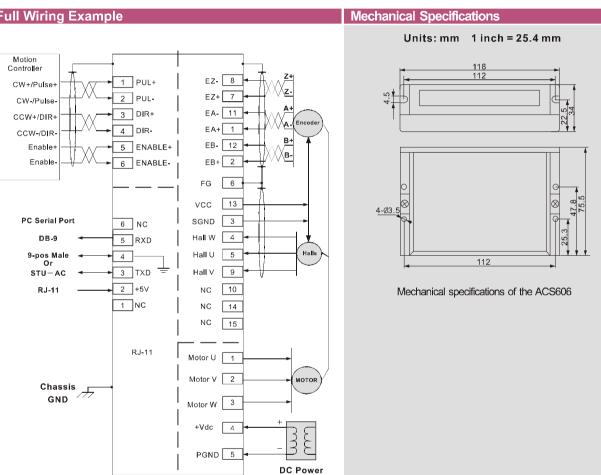
Motor Feedback Connector

Pin.	Name	Description	I/O	Pin.	Name	Description	I/O
1	EA+	Encoder Channel A+ Input	Ι	9	HallV	Hall sensor V input	I
2	EB+	Encoder Channel B+ Input		10	NC	Not connected	-
3	EGND	Signal ground	GND	11	EA-	Encoder Channel A- Input	1
4	HallW	Hall sensor W input		12	EB-	Encoder Channel B- Input	1
5	HallU	Hall sensor U input	Ι	13	VCC	+5V @ 100 mA max.	0
6	FG	Ground terminal for shielded	GND	14	NC	Not connected	-
7	EZ+	Encoder Channel Z+ Input	Ι	15	NC	Not connected	-
8	EZ-	Encoder Channel Z- Input	I				

R5232	2 Commun	nication Interface					
Pin.	Name	Description	I/O	Pin.	Name	Description	I/O
1	NC	Not connected	-	4	GND	Signal ground	GND
2	+5V	Power for STU-ACS	0	5	RxD	RS232: Receive	1
3	TxD	RS232: Transmit	0	6	NC	Not connected	-
Powe	r Connec	ctor X1		Moto	r Connec	tor X2	
Pin.	Name	Description	I/O	Pin.	Name	Description	I/O

GND

1


Full Wiring Example

GND

VDC

1 2 Power ground

DC power Input (18 to 30 VDC)

ACS60

Motor	Connec	tor X2	
Pin.	Name	Description	I/O
1	U	Motor phase U	0
2	V	Motor phase V	0
3	W	Motor phase W	0

AC\$606

ACS306 Simple AC and Brushless DC Servo Drive (Operation Mode: Position)

Features:

- * Position Control Mode with Opto-isolated Pulse and Direction Inputs
- * PC-based and Handheld Tuning Tools Available
- * Input Voltage:18 VDC to 30 VDC
- * Continuous Current 6A, Peak Current: 18A
- * Powering 25W to 150 W AC and Brushless DC Servo Motors

Matched Motors

Power		Models
25 W	BLM57025	
50 W	BLM57050	
90 W	BLM57090	
130 W	BLM57130	

Introduction

Leadshine's ACS306 is a simple, fully digital brushless DC/AC servo drive. It features high reliability, compact size and PUL/DIR/ENA input signals that match those used by stepper motor drives, allowing a drop-in upgrade for older systems.

The simple drive supports position control (for velocity or torque control modes, see the ACS806 and ACHxxxx drives) and tuning is accomplished with PC-based or handheld tools. It accepts a wide input voltage range (18 VDC to 30 VDC) and is suitable for driving 25 W to 150 W DC or AC brushless motors.

Applications

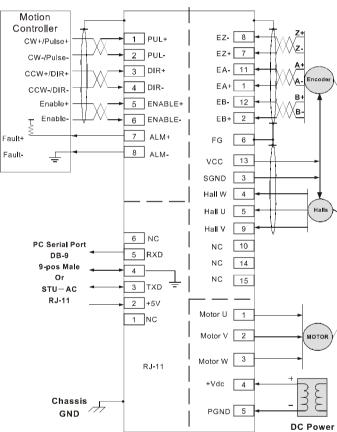
Suitable for small to medium automation machinery and equipment, such as large format printers, engraving machines, electronics manufacturing equipment, pick and place machines, packing machines, and etc. Particularly suited to applications requiring high speed, high precision, high reliability and low motor noise.

Connections **Command Signal Connector**

Pin.	Name	Description	I/O	Pin.	Name	Description	I/O
1	PUL+	Pulse signal input +	Ι	5	EN+	Enable signal input+	1
2	PUL-	Pulse signal input -	I	6	EN-	Enable signal input-	1
3	DIR+	Direction control signal input +	Ι	7	ALM+	Alarm signal output+	0
4	DIR-	Direction control signal input -	1	8	ALM-	Alarm signal output-	0

Motor Feedback Connector

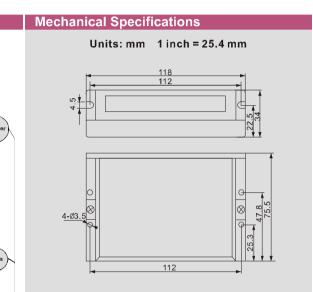
Pin.	Name	Description	I/O	Pin.	Name	Description	I/O
1	EA+	Encoder Channel A+ Input	Ι	9	HallV	Hall sensor V input	I
2	EB+	Encoder Channel B+ Input		10	NC	Not connected	-
3	EGND	Signal ground	GND	11	EA-	Encoder Channel A- Input	I.
4	HallW	Hall sensor W input		12	EB-	Encoder Channel B- Input	1
5	HallU	Hall sensor U input	Ι	13	VCC	+5V @ 100 mA max.	0
6	FG	Ground terminal for shielded	GND	14	NC	Not connected	-
7	EZ+	Encoder Channel Z+ Input	Ι	15	NC	Not connected	-
8	EZ-	Encoder Channel Z- Input					


Connections

RS232	Commun	nication Interface					
Pin.	Name	Description	I/O	Pin.	Name	Description	I/O
1	NC	Not connected	-	4	GND	Signal ground	GND
2	+5V	Power for STU-ACS	0	5	RxD	RS232: Receive	
3	TxD	RS232: Transmit	0	6	NC	Not connected	-

Power Connector X1

Pin.	Name	Description	I/O	Pin.	Name	Description	I/O
1	GND	Power ground	GND	1	U	Motor phase U	0
2	VDC	DC power Input (18 to 30 VDC)		2	V	Motor phase V	0
				3	W	Motor phase W	0


Full Wiring Example

ACS30

Motor Connector X2	Mc	otor	Con	nector	X2
--------------------	----	------	-----	--------	----

Mechanical specifications of the ACS306

ror	
-	

ACS306

ACM Series AC Servo Motors (100W/200W/400W)

Introduction

The ACM series of AC servo motors offer high performance with modes ranging from 100W to 1500W*. Mounting is compatible with Panasonic and Fuji AC servo motors. Standard models come with a standard 2500-line differential encoders with index slits (A, B, Z), and Hall Sensors (U, V, W).

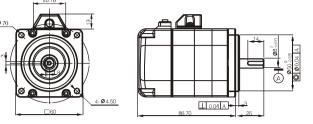
When driven by Leadshine ACS series and ACH series servo drives, the ACM series motors meet application requirements from as low as 1 rpm to as high as 4000 rpm.

400W AC Servo Motors

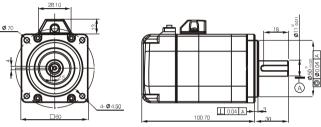
100W AC Servo Motors 200W AC Servo Motors

*Motors rated above 400W are coming soon.

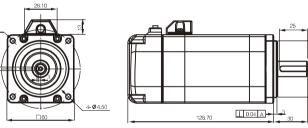
Part Number				
ACM	60	2	V36 —	2500
AC servo motor	Flange size 60: ☐ 60 mm 	Rated power 1: 100W 2: 200W 4: 400W	Rated voltage Blank: 220 VAC V36: 36 VDC V60: 60 VDC 	Encoder resolution 2500: 2500 counts/rev. 2000: 2000 counts/rev. 1000: 1000 counts/rev.

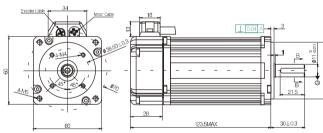

Electrical Specificati	ons (Visit ww	w.leadshine.co	m for informatio	n about other s	ervo motors.)		
Model	ACM601V36	ACM602V36(A)	ACM602V60(A)	ACM604V60	ACM604	ACM602V36-01	ACM604V60-01
Rated Voltage (V)	36	36	60	60	220	36	60
Rated Power (W)	100	200	200	400	400	200	400
Rated Torque (N.M)	0.318	0.64	0.64	1.27	1.27	0.64	1.27
Peak Torque (N.M)	0.95	1.91	1.91	3.82	3.82	1.92	3.81
Rated Speed (RPM)	3000	3000	3000	3000	3000	3000	3000
Peak Speed (RPM)	4000	4000	4000	4000	5000	4000	4000
Rated Current (A)	4	7.6	4.7	8.4	2.8	7.6	8.4
Peak Current (A)	11	22	14	25	8.5	22	25
Torque Const. (N.M/A)	0.0866	0.0918	0.15	0.161	0.49	0.084	0.151
Back EMF Const. (V/RPM)	3.03 x10 ⁻³	3.213x10 ⁻³	5.24x10 ⁻³	5.54x10 ⁻³	17x10 ⁻³	3.2x10 ⁻³	5.5x10 ⁻³
Resistance (ohm)	0.38	0.16	0.38	0.19	1.42	0.39	0.28
Inductance (mH)	0.91	0.41	1.07	0.59	6	0.33	0.34
Inertia (kgm² x 10 ⁻⁴)	0.1032	0.176 (0.296)	0.176 (0.296)	0.3549	0.3549	0.32	0.46
Allowable radial load (N)	78.6	245	245	245	245	245	245
Allowable axial load (N)	38.2	68	68	74	74	68	74
Flange Size (mm)	60	60	60	60	60	60	60
Mounting Diameter (mm)	70	70	70	70	70	70	70
Shaft Diameter (mm)	8	11 (14)	11 (14)	14	14	11	14
Motor Length (mm)	86.7	100.7	100.7	127.8	127.8	123	143
Pole Pairs (-)	4	4	4	4	4	4	4
Encoder Res. (counts/rev.)	2500 **	2500 **	2500 **	2500 **	2500 **	2500 **	2500 **
Mass (Kg)	0.701	0.966	0.984	1.463	1.48	0.95	1.48
Ambient Temperature (°C)	0 to 40	0 to 40	0 to 40	0 to 40	0 to 40	0 to 40	0 to 40

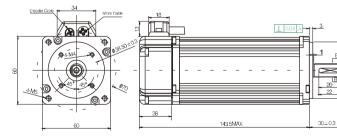
** Standard. Other configurations available, see Part Number.


Mechanical Specifications (Units: mm 1 inch = 25.4 mm)

(a) Mechanical specifications of the ACM601V36 (100W)

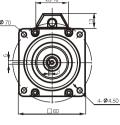

(b)

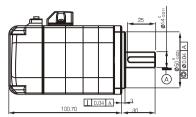

(c) Mechanical specifications of the ACM602V36 and the ACM602V60 (200W)


(d) Mechanical specifications of the ACM604V60 and the ACM604 (400W)

(e) Mechanical specifications of the ACM602V36-01 (200W)

(f) Mechanical specifications of the ACM604V60-01 (400W)




Matching Drives	
Models	Matching Drives
100 W AC Servo Motors	ACS806
200 W AC Servo Motors	ACS806
400 W AC Servo Motors	ACS806, ACH1000

ACM Serie

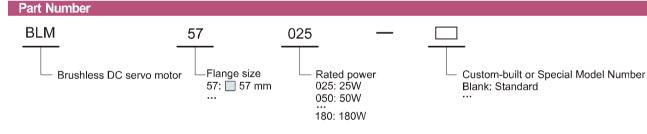
(b) Mechanical specifications of the ACM602V36A and the ACM602V60A (200W) $^{\infty}$ 10

ACM Series

BLM Series Brushless DC Servo Motors (25W-180W)

Leadshine's BLM series of brushless DC servo motors offer high performance in costeffective packages. The series boasts rated speeds of 3000 RPM and come standard with 1000-line differential encoders (A, B) and Hall sensors (U, V, W).

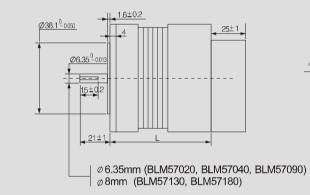
When driven by Leadshine's ACS series servo motor drivers the BLM and 57BL series motors meet application requirements from as low as 1 RPM to as high as 4000 RPM. They offer AC-servo-like performance including high reliability, high speed, high precision, low motor noise and low levels of motor heating.


The BLM series is flange mount and has been designed to be compatible with NEMA23 stepping motors. The 57BL series features a compact, screw-mount body.

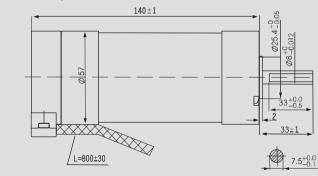
* The 57BL180 is a screw mounted model and the above scheme does not apply.

General Specifications

Winding connection: \triangle (Delta connection) Hall Sensor: 120° Pole Pairs (-): 2 Phase: 3 Shaft Radial Play: 0.025 mm Shaft Axial Play: 0.025 mm@460g


Allowable radial load: 75 N@20mm from the flange Allowable axial load: 15 N Isolation Level: Class B Isolation Strength: 500 VDC for one minute Isolation Resistance: 100 M ohms

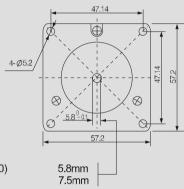
Mot	or Wires	S							
No.	Colour	Wire Size	Name	Description	No.	Colour	Wire Size	Name	Description
1	Red		Vcc	Power Input of Hall (+5V)	5	Black	UL 1007 26 AWG	GND	Power GND of Hall
2	Blue	UL 1007 26	HALL A	Hall Sensor A	6	Brown	UL 1007 20	PHASE A	Motor Coil, Phase A
3	Green	AWG	HALL B	Hall Sensor B	7	Blue	AWG	PHASE B	Motor Coil, Phase B
4	White		HALL C	Hall Sensor C	8	Black	////0	PHASE C	Motor Coil, Phase C

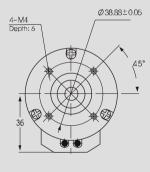

Electric	al Specifications						
No.	Parameters	BLM57025	BLM57050	BLM57090	BLM57130	BLM57180	57BL180
1	Rated Voltage (VDC)	24	24	36	36	36	36
2	Rated Power (W)	25	50	90	130	180	180
3	Rated Torque (N.M)	0.08	0.16	0.29	0.41	0.57	0.57
4	Peak Torque (N.M)	0.24	0.48	0.87	1.23	1.71	1.71
5	Rated Speed (RPM)	3000	3000	3000	3000	3000	3000
6	Rated Current (A)	1.6	3	3.45	5.3	6.7	7
7	Peak Current (A)	4.8	9	10.35	15.9	20	20.5
8	Torque Const. (N.M/A)	0.05	0.053	0.084	0.078	0.085	0.089
9	Back EMF Const. (V/RPM)	5.2	5.55	8.8	8.2	8.9	9.3
10	Resistance (ohms)	1.73	0.88	1.35	0.63	0.9	0.53
11	Inductance (mH)	3.36	2.2	4.1	2.17	2	1.55
12	Inertia (kgm² x 10 ⁻⁵)	0.03	0.075	0.119	0.173	0.23	0.23
13	Motor Length (mm)	45	55	75	95	115	122
14	Mass (Kg)	0.25	0.5	0.75	1	1.25	1.25

Mechanical Specifications (Unit:mm 1 inch = 25.4 mm)

(a). Mechanical specification of the BLM57xxx series motors.

(b). Mechanical specification of the 57BL180.


Note:


The thread depth for the M4 mounting holes on the face of the 57BL180 is 6.0 mm. Do not screw more than 6.0 mm as this will cause damage to the motor.

Matching Drives
ACS306, ACS606
ACS306, ACS606
ACS306, ACS606
ACS306, ACS606
ACS606
ACS606

BLM Series

BLM Series
DCS Series
DCS Series DCS303

DCS Series Brushed DC Servo Drives

DCS303

Features:

*Advanced DSP control technology for smooth motion

*18 VDC to 80 VDC supply range and capable of providing 10 A continuous and 20 A peak current

*Suitable for 10 W to 400 W brushed DC servo motors

*Position control with 4 × encoder resolution accuracy

*Adjustable position following error alarm range

*Electronic gearing with adjustable ratio from 1/255 to 255

*Built-in motion controller for self-test with trapezoidal velocity profile

*Pulse and direction (PUL/DIR) inputs can alternatively be configured as clockwise and counter-clockwise pulse inputs (CW/CCW)

*Opto-isolated inputs supporting single-ended or differential signals

*PC-based and handheld configuration tools available

*Over-current, over-voltage, under-voltage, phase error, encoder error and position following error protections *10 error history log

Power Specifications

Model	Input Voltage (VDC)	Continuous Current (A)	Peak Current (A)	Power (W)
DCS303	18 to 30	3	15	90 Max
DCS810	18 to 80	10	20	400 Max
DCS810S	18 to 80	10	20	400 Max
DCS811	18 to 80	11	20	400 Max

Introduction

The DCS series drives are fully digital brushed servo drives developed with high speed DSP and advanced algorithms for smooth motion control. Opto-isolated pulse and direction control inputs allow the drives to be drop-in replacements for stepping motor drives. In low power motion control applications DC servo motor systems perform as well as or better than AC servo motor systems with high precision, high stability and low noise at far lower costs.

The DCS series drives are very easy to use. Leadshine supplies PC-based ProTuner software for Windows. A handheld tuning and configuration tool, the STU-DCS allows configuration of the drives out in the field.

The DCS303 is a micro-size (86 × 55.5 × 20.5 mm or 3.4 × 2.2 × 0.81 inches) brushed DC servo drive. It is ideal for low power applications with limited mounting space.

The DSC810S is designed to replace the DB810-50V which was widely used in inkjet printers. It offers improved performance with the same electrical connections

The DCS810 has differential command and encoder feedback inputs and offers better anti-interference performance.

The DCS811 features high speed response and full closed-loop control. It can drive a brushed DC motor without an encoder and use feedback signals from an encoder or linear scale attached directly to the load. Electronic damping and fast torgue control technology allow the DCS811 to provide fast response with good vibration suppression. The drive is particularly suited to applications requiring high precision positioning and low cost.

Performance Specifications (with DCM Series Servo Motors)

- * Position following error: adjustable down to \pm 1 count
- * Maximum acceleration (No Load): 80 RPM / ms
- * Maximum speed: 3500 RPM
- * Positioning accuracy: ± 1 count

Applications

Widely used in large format inkjet printers, solvent printers, small and medium engraving machines, electronic manufacturing, NC machines, packing machines and production line equipment. These brushed DC servo drives are particularly suited to systems that require high precision and high speed at low cost.

Current

Part Number		
DCS	8	10
\top	Т	Т
Brush DC Servo Drive	Maximum Input Voltage	Continuous
	8: 80 VDC	10: 10 A
	3: 30 VDC	3: 3 A
General Specification	ns	

Electrical Crossificati

Electrical Specifications					
Parameters	DCS303	DCS810	DCS810S	DCS811	
Input Voltage 18 to 30 VDC 18 to		18 to 80 VDC	18 to 80 VDC	18 to 80 VDC	
Continuous Current	3 A	10 A	10 A	10 A	
Peak Current	15 A	20 A	20 A	20 A	
Pulse Input Frequency		250 kHz			
Logical Signal Input Current		7 to 2	20 mA		
Current Provided for Encoder	50 mA				
Isolation Resistance		500	MΩ		

Command and I/O Signals

Parameters	DCS303	DCS810	DCS810S	DCS811
Operation Mode		Position		
	PUL/DIR	PUL/DIR & CW/CCW	PUL/DIR & CW/CCW	PUL/DIR & CW/CCW
Input Command	Single-ended	Single-ended & Differential	Single-ended	Single-ended & Differential
Motor Encoder	A, B phase Single-ended	A, B phase differential	A, B phase single	None
External Encoder	None	None	None	A, B phase differential
Enable Signal	Single-ended	Differential	Differential	Differential
Alarm Signal	OC output, optical isolated	None	OC output, none-isolated	None
Communication Connector	B4B-PH	RJ-11	RJ-11	RJ-11
Communication Interface		RS232		
Protection Function	Over voltage, Unde	r voltage, Over current, Phase	e error, Position following error I	imit, Encoder failure
Matching Motors	18 to 30 VDC brush DC servo motors with single-ended encoder, power up to 90W	18 to 80 VDC brush DC servo motors with differential encoder, power up to 400W	18 to 80 VDC brush DC servo motors with single-ended encoder, power up to 400W	18 to 80 VDC brush DC servo motors without encoder, power up to 400W

Configuration 9 Tuning Tools

Configuration & Turning Tools	5			
Parts	DCS303	DCS810	DCS810S	DCS811
PC Based Software	ProTuner	ProTuner	ProTuner	ProTuner
Handheld Servo Tuning Unit	STU-DCS	STU-DCS	STU-DCS	STU-DCS
Mechanical Specifications				
Parameters	DCS303	DCS810	DCS810S	DCS811
Size (H \times W \times D) (mm)	86 × 55.5 × 20.5	116 × 69.2 × 26.5	116 × 69.2 × 26.5	$116 \times 69.2 \times 26.5$
Weight (g)	100	210	212	220

DCS303 DCS810 DCS810S DCS811			
DCS303	DCS810	DCS810S	DCS811
ProTuner	ProTuner	ProTuner	ProTuner
STU-DCS	STU-DCS	STU-DCS	STU-DCS
DCS303	DCS810	DCS810S	DCS811
86 × 55.5 × 20.5	116 × 69.2 × 26.5	116 × 69.2 × 26.5	116 × 69.2 × 26.5
100	210	212	220
	ProTuner STU-DCS DCS303 86 × 55.5 × 20.5	ProTuner ProTuner STU-DCS STU-DCS DCS303 DCS810 86 × 55.5 × 20.5 116 × 69.2 × 26.5	ProTuner ProTuner ProTuner STU-DCS STU-DCS STU-DCS DCS303 DCS810 DCS810S 86 × 55.5 × 20.5 116 × 69.2 × 26.5 116 × 69.2 × 26.5

DCS Serie

- * Velocity accuracy: ± 2 RPM
- * Input frequency: up to 250 kHz (500 kHz for the DCS811)
- * Low speed control: down to 1 RPM
- * Suitable for 18 VDC to 80 VDC brushed DC servo motors

S

Special Model Symbol Blank: Standard S: Single-ended input

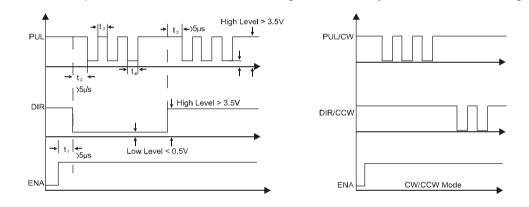
DCS Series
DCS Series
DCS Series DCS303
DCS Series DCS303 DCS810

Operating Environment and Other Parameters

Model	DCS303	DCS810	DCS810S	DCS811			
Cooling		Natural cooling	or forced cooling				
Environment	Avoid dust, oil fog and corrosive gases						
Ambient Temperature	0 °C to 50 °C (32 °F to 122 °F)						
Humidity	40% to 90% RH						
Vibration		5.9 m/s² Max					
Storage Temperature	-20 °C to +65 °C (-4 °F to 149 °F)						

Tips

(a) Although both regulated and unregulated power supplies can be used to power the drives, unregulated power supplies are preferred due to their ability to withstand current surge. Select a power supply with output voltage equal/approach to rated voltage of the chosen motor. An external electrolytic capacitor (rated voltage > 1.3 times of the voltage of power supply) should be added between power input terminals if voltage ripples is larger than 5% of power supply rated voltage. Rated power of the power supply should be larger than 1.2 times of the power of the servo motor. The larger the power of the power supply, the better, especially in applications requiring quick acceleration.


(b) Drive's working temperature should be lower than 70°C (or 158°F), and motor working temperature should be lower than 80 °C (or 176 °F). Use forced cooling to cool the system if necessary.

(c) To improve anti-interference performance of the system, use twisted pair shield cable for control signals and correctly ground the system. To prevent noise coupled on pulse/direction signal, pulse/direction signal wires, motors and power wires should not be tied up together. Separate them by at least 10 centimeters (4 inches) to avoid disturbing signals generated by motor, which will easily disturb pulse and direction signals, causing motor position error, system instability and other failures.

(d) Don't pull and plug motor & power wires while a drive is powered ON, is high current flowing through motor coils (even stopped). Pulling or plugging motor or power wires with power on will cause extremely high voltage surge, which could damage the drive.

(e) If a power supply serves several drives, connecting those drives separately is recommended instead of daisy-chaining connection.

(f) In order to avoid some fault operations and deviations, PUL, DIR and ENA signals should abide by some rules, shown as following diagrams:

Notes:

- (1) t1: ENA must be ahead of DIR by at least 5 µ s, Usually, ENA+ and ENA- are NC (not connected).
- (2) t2: DIR must be ahead of PUL active edge by at least 5 μ s to ensure correct direction.
- (3) t3: High Level not less than 2μ s (DCS303, DCS810, DCS810S) or 1.0μ s (DCS811).
- (4) t4: Low Level not less than 2μ s (DCS303, DCS810, DCS810S) or 1.0 μ s (DCS811).

PC Based and Handheld Configuration and Tuning Tools

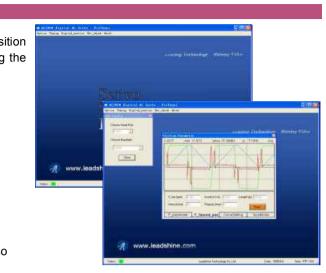
Leadshine offers PC based and handheld configuration and tuning tools to meet different requirements and configuration and tuning environments. The user can tune the DCS series drives with two different tuning tools, including Pro Tuner (Windows based setup software) and STU-DCS (Handheld servo tuning unit).

ProTuner (Windows Based Setup Software)

- Upload and Download parameter settings
- Digital oscilloscope for real-time current, velocity, position following error display. Measurements can be taken using the mouse pointer.
- PID parameter settings for position loop
- PI parameter settings for current loop
- Electronic gear rate setting from 1/255 to 255
 - Position following error range setting
- Encoder resolution setting
- Parameter settings for self motion test (with trapezoidal velocity profile)
- Read the latest 10 failure events and clear the events
- * 1 PC RS232 interface is necessary

** Leadshine offers a cable for interfacing the drive to an RS232 port on the computer. USB-to-RS232 converter also available.

STU-DCS (Handheld Small Servo Tuning Unit)


- Similar to most HMI of servo drives from other manufacturers
- PID parameter settings for position loop
- Electronic gear rate setting from 1/255 to 255
- Position following error range setting
- Real-time current, velocity, position following error display.
- Parameter settings for self motion test (with trapezoidal velocity profile)
- Read the latest 10 failure events and clear the events

* Leadshine offers a special cable for communication between the drive and the STU-DCS handheld tuner.

Orde	r Informatio	n
Part	Model	
	DCS303	Micro-size digital servo drive for 5-90W brush D
DC Servo	DCS810	Differential digital servo drive for 20-400W brush
Drives	DCS810S	Single-ended digital servo drive for 20-400W br
DIIVES	DCS811	Full closed-loop digital servo drive for 20-400W
	ProTunner	PC based configuration & tuning software (free)
Tuning	STU-DCS	Handheld configuration & tuning unit. Each cust
Tools	USB Cable	USB cable for connection & communication be
	R232 Cable	RS232 cable for connection & communication b
	DCM50xxx-1000	Screw mounted brush DC servo motor with
	DCM50xxx-500	Screw mounted brush DC servo motor with
DCM	DCM50xxxD-1000	Screw mounted brush DC servo motor with
Series	DCM50xxxD-500	Screw mounted brush DC servo motor with
Motors	DCM57xxx-1000	Flange mounted brush DC servo motor with
Motors	DCM57xxx-500	Flange mounted brush DC servo motor with
	DCM57xxxD-1000	Flange mounted brush DC servo motor with
	DCM57xxxD-500	Flange mounted brush DC servo motor with

DCS Seri

Description

DC servo motors, input: 18-30 VDC, Cont, Cur: 3A, Peak Cur: 15A h DC servo motors, input: 18-80 VDC, Cont. Cur: 10A, Peak Cur: 20A rush DC servo motors, input: 18-80 VDC, Cont. Cur: 10A, Peak Cur: 20A / brush DC servo motors, input: 18-80 VDC, Cont. Cur: 10A, Peak Cur: 20A

stomer can get one STU-DCS for free.

stween the servo drive and PC USB interface.

between the servo drive and PC RS232 interface.

a 1000 line incremental encoder (A, B phase single-ended).

a 500 line incremental encoder (A, B phase single-ended).

a 1000 line incremental encoder (A, B phase differential).

a 500 line incremental encoder (A, B phase differential).

h a 1000 line incremental encoder (A, B phase single-ended).

h a 500 line incremental encoder (A, B phase single-ended).

h a 1000 line incremental encoder (A, B phase differential).

h a 500 line incremental encoder (A, B phase differential).

DCS Series

Micro-size Digital Brushed DC Servo Drive DCS303

Features:

- * Position control mode with opto-isolated pulse and direction inputs
- * PC-based and handheld tuning tools available
- * Input voltage: 18 VDC to 30 VDC
- * Continuous current: 3 A, Peak current: 15A,
- * Powers 5 W to 90W brushed DC servo motors.
- * Adjustable position following error lock range
- * Single-ended encoder feedback
- * Micro-size, surface-mount technology

Driving Motors Model

DCS303 18 VDC to 30 VDC brushed DC servo motors, power up to 90W

Introduction

The DCS303 is a micro-size brushed DC servo drive delivering power up to 90 W. It is ideal for low power applications with limited mounting space. Features include high reliability, easy-to-use, and micro-size.

Applications

Suitable for a wide range of equipment and instruments such as inkjet printers, solvent printers, cutting plotters, medical equipment, small automation machines, and etc. Particularly suited to applications requiring minimal vibration, low noise, high speed and high precision.

Connectors

Power and I	lotor (Connector
-------------	---------	-----------

Pin.	Name	Description	I/O	Pin.	Name	Description	I/O
1	Motor+	Motor positive connection	0	3	+Vdc	DC power Input (18 to 30 VDC)	1
2	Motor-	Motor negative connection	0	4	GND	Power ground	GND

Encoder Connector

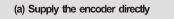
Pin.	Name	Description	I/O	Pin.	Name	Description	I/O
1	EB	Encoder Channel B Input	Ι	3	VCC	+5V @ 50 mA max.	0
2	EA	Encoder Channel A Input	1	4	EGND	+5V power ground	-

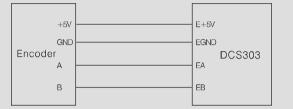
Command and I/O Signal Connector

Pin.	Name	Description	I/O	Pin.	Name	Description	I/O
1	PUL	Pulse signal input	I	4	EN	Enable/Disable signal input	-
2	DIR	Direction control signal input	1	5	ERR	Alarm signal output (OC output)	0
3	OPTO	Opto-coupler power input (Normal: +5V)	Ι	6	EGD	Opto-coupler power ground	-

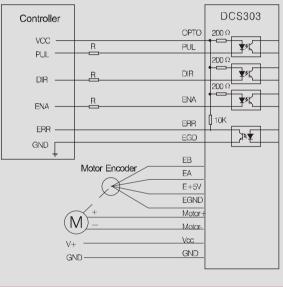
RS232 Communication Interface

Pin.	Name	Description	I/O	Pin.	Name	Description	I/O
1	+5V	Power for STU-DCS	0	3	GND	Signal ground	GND
2	TxD	RS232: Transmit	0	4	RxD	RS232: Receive	I

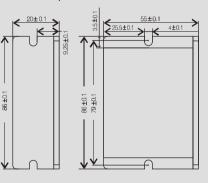

RS232 Pin assignment



Typical Connections

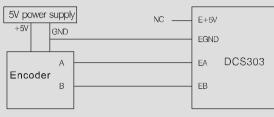

Encoder Connections

The DCS303 supports an encoder with single-ended A, B signals. If the encoder drains less than 50mA, the DCS303 can supply the encoder directly, and connect it as Figure (a). If the encoder drains more than 50mA, use an external DC supply and connect it as Figure (b). Note that twisted-pair shielded cabling provides the best immunity in electrically noisy environments.



(c) Full wiring example

Mechanical Specifications (Units: mm 1 inch = 25.4 mm)


Mechanical specifications of the DCS303

DCS303: 86x55x20mm

DC\$30

(b) Using external power supply for the encoder

Digital Brushed DC Servo Drive DCS810

(Differential input & feedback)

Features:

- * Position control mode with opto-isolated pulse and direction inputs
- * PC-based and handheld tuning tools available
- * Input voltage: 18 VDC to 80 VDC
- * Continuous current: 10 A , Peak current: 20A ,
- * Powers 20 W to 400W brushed DC servo motors.
- * PUL/DIR or CW/CCW inputs
- * Adjustable position following error lock range
- * Differential or Single-ended encoder feedback
- * Surface-mount technology

Driving Motors

DCS810 18 to 80 VDC brushed DC servo motors, power up to 400W. Recommended motors DCM50xxxD-xxxx and DCM57xxxD-xxxx.

Introduction

Model

The DCS810 is a digital brushed DC servo drive delivering power up to 400 W, features high driving and anti-interference performance. Particularly suited to electrically noisy environments with strong external interference, complicated wirings in a small room.

Applications

Suitable for a wide range of equipment and machines such as inkjet printers, solvent printers, small and medium engraving machines, electronic manufacturing, NC machines, packing equipments, and etc. Particularly suited to applications requiring minimal vibration, low noise, high speed, high precision and good anti-interference performance.

Connectors

Power and Motor Connector

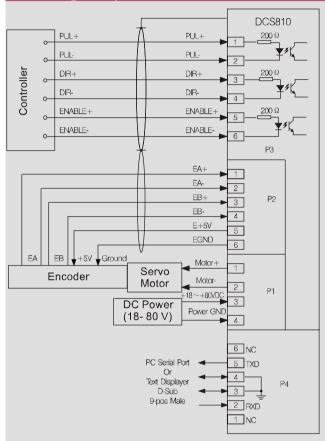
Pin.	Name	Description	I/O	Pin.	Name	Description	I/O
1	Motor+	Motor positive connection	0	3	+Vdc	DC power Input (18 to 80 VDC)	I
2	Motor-	Motor negative connection	0	4	GND	Power ground	GND

RS232 Communication Interface

Pin.	Name	Description	I/O	Pin.	Name	Description	I/O
1	NC	Not connected	-	4	GND	Signal ground	GND
2	+5V	Power for STU-DCS	0	5	RxD	RS232: Receive	1
3	TxD	RS232: Transmit	0	6	NC	Not connected	-

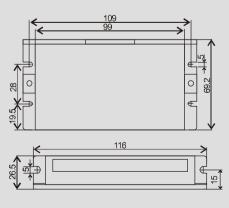
Encoder Connector

Pin.	Name	Description	I/O	Pin.	Name	Description	I/O
1	EB+	Encoder Channel B Input+	I	4	EA-	Encoder Channel A Input-	
2	EB-	Encoder Channel B Input-	1	5	VCC	+5V @ 50 mA max.	0
3	EA+	Encoder Channel A Input+	1	6	EGND	+5V power ground	-


Pin Function

	-	al Connector	
Pin.	Name		Description

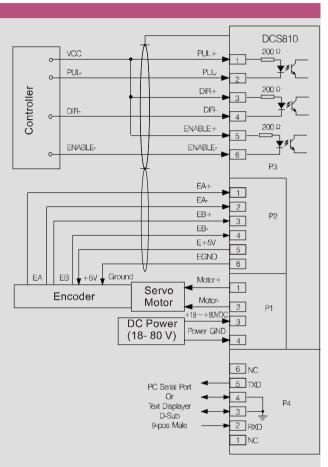
1	PUL+	Pulse signal input +	Ι
2	PUL-	Pulse signal input -	I
3	DIR+	Direction control signal input +	1
4	DIR-	Direction control signal input -	1


0

Full Wiring Examples

(a) Typical connections (differential controller)

Mechanical Specifications (Units: mm 1 inch = 25.4 mm)



Mechanical specifications of the DCS810

DCS810

Pin.	Name	Description	I/O
5	EN+	Enable signal input+	Ι
6	EN-	Enable signal input-	1

(b) Typical connections (single-ended controller)

ACS & ACH ACS806 ACS006 ACS006 ACM Series BLM Series DCS Series DCS303 DCS810 DCS810S DCM Series

Digital Brushed DC Servo Drive DCS810S

(Single-ended input & feedback)

Features:

- * Position control mode with opto-isolated pulse and direction inputs
- * PC-based and handheld tuning tools available
- * Input voltage: 18 VDC to 80 VDC
- * Continuous current: 10 A , Peak current: 20A ,
- * Powers 20 W to 400W brushed DC servo motors.
- * PUL/DIR or CW/CCW inputs
- * Adjustable position following error lock range
- * Single-ended encoder feedback and command inputs
- * Surface-mount technology

Driving Motors

DCS810S 18 to 80 VDC brushed DC servo motors, power up to 400W. Recommended motors DCM50xxx-xxxx and DCM57xxx-xxxx

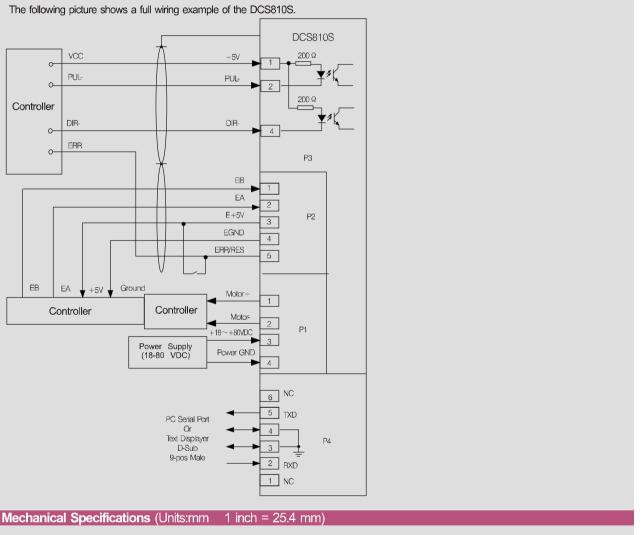
Introduction

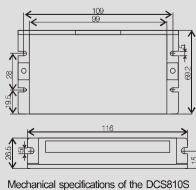
Model

The DCS810S is a digital brushed DC servo drive delivering power up to 400 W. The DSC810S is designed to replace the DB810-50V which was widely used in inkjet printers. It offers improved performance with the same electrical connections. There are two DIP switches (SW1 and SW2) can be used to select 4 group servo parameters stored in EEPROM of the drive. Users can select one group of these servo parameters to optimize the performance for different applications, in which using different motors or having different load.

Applications

Suitable for a wide range of equipment and machines such as inkjet printers, solvent printers, small and medium engraving machines, electronic manufacturing, NC machines, packing machines, and etc. Particularly suited to applications requiring minimal vibration, low noise, high speed, high precision.

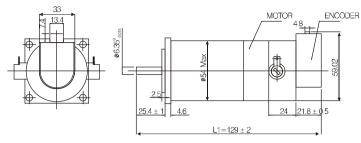

Pin.	Name	Description	I/O	Pin.	Name	Description	I/O
1	Motor+	Motor positive connection	0	3	+Vdc	DC power Input (18 to 30 VDC)	
2	Motor-	Motor negative connection	0	4	GND	Power ground	GND
Dim	Name	Description	1/0	Die	Name	Description.	1/0
Pin.	Name	Description	I/O	Pin.	Name	Description	I/O
Pin. 1	Name NC	Description Not connected	I/O -	Pin. 4	Name GND	Description Signal ground	I/O GND
Pin. 1 2			I/O - 0				
1	NC	Not connected	-	4	GND	Signal ground	
1 2 3	NC +5V	Not connected Power for STU-DCS RS232: Transmit	-	4 5	GND RxD	Signal ground RS232: Receive	

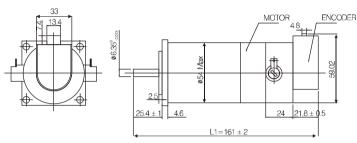

Pin.	Name	Description	I/O	Pin.	Name	Description	I/O
1	EB	Encoder Channel B Input	I.	4	EGND-	+5V power ground	-
2	EA	Encoder Channel A Input	I	5	ERR	Alarm signal output (OC output)	0
3	E +5V	+5V @ 50 mA max.	0				

Cor	nector	'S					
DIP Sv	vitch & Co	ommand Signal Connector					
Pin.	Name	Description	I/O	Pin.	Name	Description	I/O
1	SW2	SW2 DIP switch for parameter selection	I	4	PUL	Pulse signal input	Ι
2	SW1	SW1 DIP switch for parameter selection	I	5	DIR	Direction signal input	I
3	+5V	Opto-coupler power input (Normal: +5V)	Ι	6	EGD	Signal ground	-

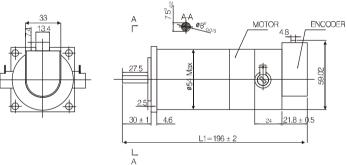
* There are two DIP switches (SW1 and SW2) can be used to select 4 groups servo parameters stored in EEPROM of the drive. The user can select one group of these servo parameters to optimize the performance for different applications, in which using different motors or having different load. For most applications, these two DIP switches should be both on OFF positions (Factory Default Status), for saving and selecting the user's own servo parameters, NOT other 3 groups for dedicated applications.

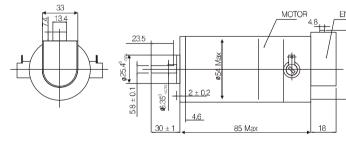
Full Wiring Example

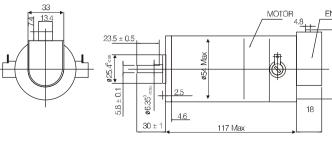



ICS810S

Mechanical Specifications (Units: mm 1 inch = 25.4 mm)


Mechanical specifications of the DCM57202 motor (plus encoder):


Mechanical specifications of the DCM57205 motor (plus encoder):


Mechanical specifications of the DCM57207 motor (plus encoder):

Mechanical specifications of the DCM50202A motor (plus encoder):

Mechanical specifications of the DCM50205 motor (plus encoder):

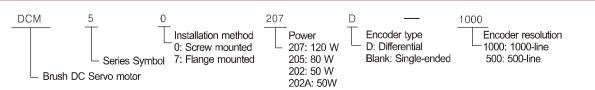
DCM Series Brushed DC Servo Motors

Features:

- * Smooth operation, High precision, High reliability
- * Extremely Low cost
- * Mounting compatible with PITTMAN 14xxx motors
- * Encoder resolution optional (1000 line or 500 line)
- * Position error adjustable: down to one pulse
- * Mounting dimensions of DCM57xxx brushed servo motors are the same as those of NEMA 23 stepping motors

Introduction

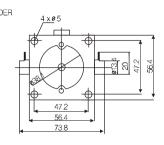
The DCM50xxx/57xxx series motors are permanent magnet brushed DC servo motors. The motors are high quality and costeffective, making them ideal for cost sensitive applications. All of them come with an attached encoder which provides position feedback to controllers. Mounting dimensions of DCM57xxx brush servo motors are the same as those of NEMA23 stepping motors.

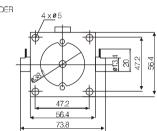

Applications

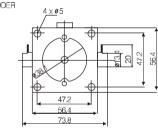
The DCM5xxxx series brushed DC servo motors are widely used in inkjet printers, medical equipment, measuring devices, engraving machines, electronic packing equipment, and so on. Particularly suited to the applications requiring minimal vibration, super-low noise, high precision and high speed.

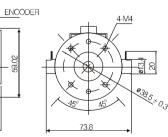
Electrical Specifications

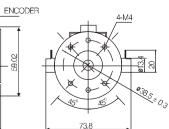
							(
No.	Parameters	Symbol	Units	DCM50202A	DCM57202	DCM5x205	DCM5x207
1	Continuous Torque (Max)	T _c	N·m	0.15	0.15	0.25	0.35
2	Peak Torque (Stall)	T _{PK}	N·m	0.76	0.76	1.59	2.90
3	No-load Speed	S _{NL}	rpm	$4600 \pm 10\%$	$4600\pm10\%$	$4000\pm10\%$	$3600\pm10\%$
4	Rated Speed	S _R	rpm	3500	3500	3400	2900
5	Rotor Inertia	J _M	kg∙m²	1.62 x 10⁵	1.62 x 10⁵	3.11 x 10 ⁻⁵	4.73 x 10 ^⁵
6	Winding Temperature	θ_{MAX}	°C	155 (Max)	155 (Max)	155 (Max)	155 (Max)
7	Thermal Impedance	R _{TH}	°C/watt	9.00	9.00	7.30	4.98
8	Weight (Plus Encoder)	W _M	g	694	754	1182	1338
9	Length (Plus Encoder)	L1	mm	129±2	129±2	161±2	196 ± 2
10	Rated Voltage	Е	V	24	24	24	30.3
11	Rated Current	I	А	1.79	1.79	2.95	3.94
12	Torque Constant	K,	N·m/A	48 x 10 ⁻³	48 x 10 ⁻³	52 x 10³	80 x 10 ³
13	Resistance	R_{τ}	Ω	2.52	2.52	0.8	0.90
14	No-load Current	I _{NL}	Α	0.45	0.45	0.5	0.45
15	Peak Current (Stall)	l _p	А	13.9	13.9	21.6	32.6
16	Encoder Resolution	-	steps/rev.	500/1000	500/1000	500/1000	500/1000

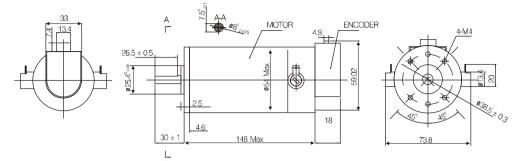

Part Number




DCM Series







DCM Series

Mechanical specifications of the DCM50207 motor (plus encoder):

Encoder Connections

	Coni	nection Table for Single-ended Encoder		Connection Table for Differential Encoder						
Pin	Color	Connection (DCS303, DCS810S / DCS810)	Pin	Color	Connection (DCS810)					
1	Blue	Channel B (EB / EB+)	1	Black	Channel A+ (EA+)					
2	Yellow	Channel A (E A / EA+)	2	Blue	Channel A- (EA-)					
3	Red	VCC (E+5V / E+5V)	3	Yellow	Channel B+ (EB+)					
4	Black	Ground (EGND / EGND)	4	Green	Channel B- (EB-)					
5	Green	Index / NC (NC / NC)	5	Red	VCC (E+5V)					
			6	White	Ground (EGND)					

Note: The DCM5xxxx-1000 motor includes an attached 1000 line encoder and the DCM5xxxx-500 motor includes an attached 500 line encoder. The Z (Index) signal is NOT offered by standard models, please contact Leadshine if an encoder with Z (Index) signal is required.

Order Information

DCM50xxx-1000 is a screw mounted motor including a 1000 line encoder (single-ended output), such as the DCM50202A-1000, DCM50205-1000, DCM50207-1000.

DCM50xxx-500 is a screw mounted motor including a single-ended 500 line encoder (single-ended output), such as the DCM50202A-500, the DCM50205-500 and the DCM50207-500.

DCM57xxx-1000 is a flange mounted motor including a single-ended 1000 line encoder, such as the DCM57202-1000, the DCM57205-1000 and the DCM57207-1000.

DCM57xxx-500 is a flange mounted motor including a single-ended 500 line encoder, such as the DCM57202-500, the DCM57205-500 and the DCM57207-500.

DCM50xxxD-1000 is a screw mounted motor including a differential 1000 line encoder, such as the DCM50202AD-1000, the DCM50205D-1000 and the DCM50207D-1000.

DCM50xxxD-500 is a screw mounted motor including a differential 500 line encoder, such as the DCM50202AD-500, the DCM50205D-500 and the DCM50207D-500.

DCM57xxxD-1000 is a flange mounted motor including a differential 1000 line encoder, such as the DCM57202D-1000, the DCM57205D-1000 and the DCM57207D-1000.

DCM57xxxD-500 is a flange mounted motor including a differential 500 line encoder, such as the DCM57202D-500, the DCM57205D-500 and the DCM57207D-500.

Leadshine Step & Servo Power Supply SPS705

Input Voltage :180~250Vac No-load Output: 72Vdc Output Power : 300W

DCM Serie

V1.3b www.leisai.com SPS705 S/N: 7060300286 www.ieisai.con DC Output PWR/ ALARM V+ GND SPS Series --73 PS Series -75 **Power Supplies**

SPS Series Switching Mode Supplies

Features:

• Specifically designed to power stepping and servo drives

• High efficiency and output power up to 500W

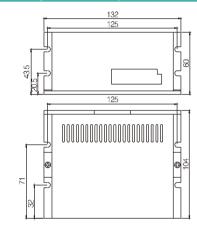
- Input voltage 220VAC \pm 10% or 110VAC \pm 10% 50/60 Hz
- Short circuit, over-current, over-voltage and short-voltage protection
- Compact size, light weight

Introduction

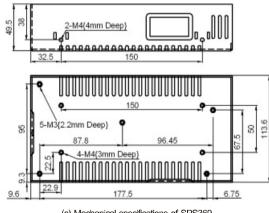
The SPS series switching mode power supplies are specifically designed to power inductive loads generated in stepping and servo systems. The normal regulated switching power supplies popular on the market are usually working with bad reliability and low efficiency when used in stepping and servo driving, this is because that the conventional switching power supplies are designed for the constant and unvarying loads. Whereas, when the stepping or servo system running, the driving current varies extremely fast, which is belonged to inductive load, herein the drives and power supplies would be damaged easily if used normal power supplies. SPS series supplies are capable of delivering current to drives without affecting the reliability due to their unregulated specialty and bulky capacitors. By selecting appropriate model, one power supply can supply 1-3 drives, saving the average cost of per shaft.

Electrical Specifications						
Model	Output Voltage (V)	Output Current (A)	Input Voltage	Size (mm)	Weight (kg)	
SPS407	42	7 (RMS)				
SPS487	48	7 (RMS)	220VAC±10% or 110VAC±10% Available	132*104*60	0.638	
SPS705	68	5 (RMS)				
SPS2410	24	10 (RMS)		199*110*50	0.8	
SPS369	36	9.7 (RMS)		215*115*50	0.88	
SPS488	48	8.3 (RMS)		261*103*65	1.14	
SPS608	60	8.5 (RMS)		261*103*65	1.13	

*Please point out the input supply voltage when you place an order.

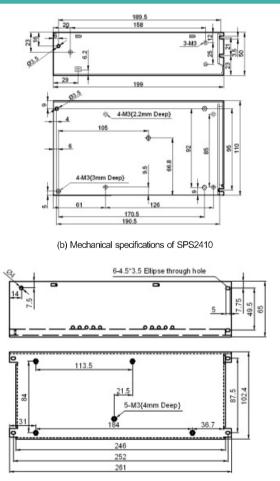

Pin Assignment and Description				
Pin	Description			
L	AC now or input			
N	AC power input.			
E	Ground terminal. Recommend connect this port to the ground for better safety.			
GND	DC output negative.			
V +	DC output positive.			

Order Information	
220VAC	110VAC
SPS407	SPS407-L
SPS487	SPS487-L
SPS705	SPS705-L
SPS2410	
SPS369	
SPS488	
SPS608	


Part Number

Mechanical Specifications (Units: mm 1 inch = 25.4 mm

(a) Mechanical specifications of SPS407, SPS487, SPS705



(c) Mechanical specifications of SPS369

(d) Mechanical specifications of SPS488, SPS608

PS Series Linear Supplies

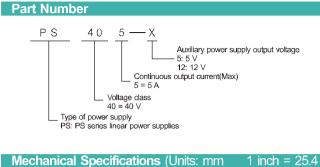
Features:

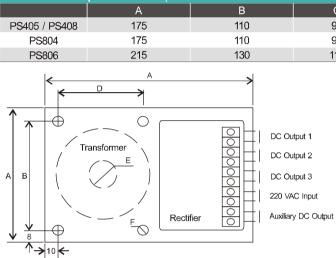
- Low cost and high reliability
- 3 main output plus 1 auxiliary output
- Short circuit and over-voltage protection
- Simple structure
- PS405 / PS408 / PS804 / PS806 are available

Introduction

The PS series linear power supplies are specially designed to power stepping and servo systems. They are unregulated power supplies and have better ability to withstand current surge than traditional switching mode power supplies.

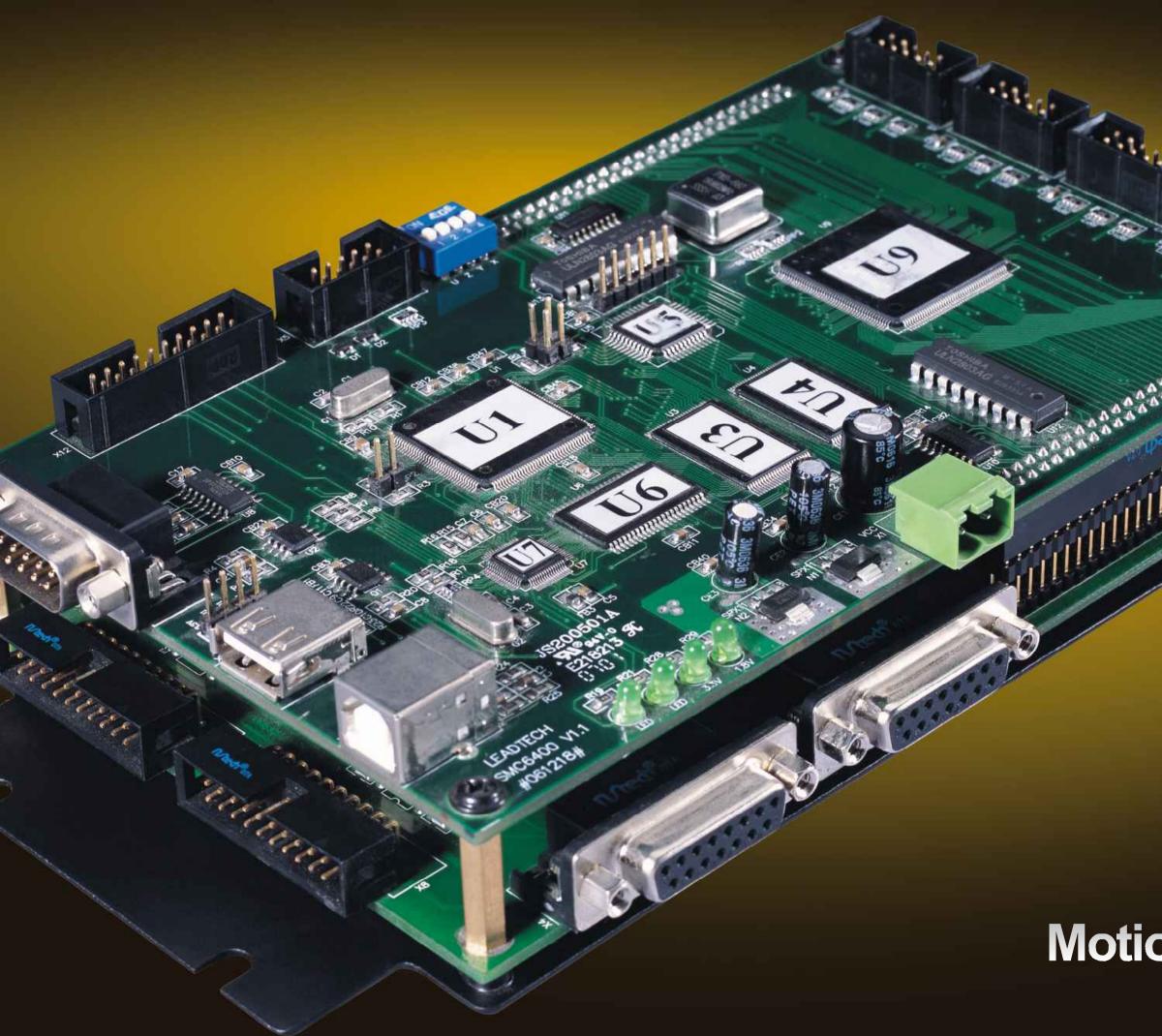
Man M.


The user may use an unregulated power supply of lower current rating than that of motor (typically 50% ~ 70% of motor current). The reason is that the drive draws current from the power supply capacitor of the unregulated supply only during the ON duration of the PWM cycle, but not during the OFF duration. Therefore, the average current withdrawn from power supply is considerably less than motor current. For example, two 3A motors can be well supplied by one unregulated power supply of 4A rating.


Electrical Spe	cifications				
Model	Main DC Output	Auxiliary DC Output	Rated Power	Size (mm)	Weight (kg)
PS405-5	DC36V/5A	DC5V/1A	200		1.6
PS405-12	DC36V/5A	DC12V/1A	200	175*110*70	
PS408-5	DC36V/8A	DC5V/1A	300	175 110 70	
PS408-12	DC36V/8A	DC12V/1A	300		
PS804-5	DC68V/4A	DC5V/1A	300	175*110*70	
PS804-12	DC68V/4A	DC12V/1A	300	1/5 110 70	2.0
PS806-5	DC68V/6A	DC5V/1A	500	215*130*70	0.5
PS806-12	DC68V/6A	DC12V/1A	500	215 130 70	3.5

Auxiliary DC Output			
Auxiliary DC Output	PS405	PS804	PS806
5V	JP1 Short-circuit	JP1 Short-circuit	R5=510 Ω 1/4W
12V	JP1 Open	JP1 Open	R5=180 Ω 1/4W

Pin Assignment and Description			
Pin	Description		
L (AC) N (AC)	220 VAC power input.		
VH+, VH+, VH+	Main DC output positive.		
VH-, VH-, VH-	Main DC output negative.		
VL +	Auxiliary DC output positive.		
VL-	Auxiliary DC output negative.		



mm)			
С	D	E	F
96	94	Ø6	Ø4
96	94	Ø6	Ø4
112	108	Ø6	Ø4

Motion Controllers

Selection Guide $ /$	J
DMC1000B 8	
DMC2410B — — — — 83	3
DMC5480 — — — — 85	5
ENC7480 — — — — 87	,
SMC6480 — — — — 89	9
SMC6400B 9	

111

Selection Guide for Motion Controller

Introduction

A variety of controllers handle motion control today. Depending on the application, a bus-based, stand-alone, or network motion controller may be needed. There are three popular data communication technologies or protocols, are ued in motion control: PC bus, such as peripheral component interconnect (PCI), fieldbus and Ethernet. Each has its place in industrial control.

PCI Bus.

PCI bus architecture offers the highest data transfer rate between peripheral devices and a PC — about 20 times greater than either Ethernet or fieldbus. There are several advantages to PC-based motion control including lower system cost, flexibility, continuous improvement of PC technology, easy to make an user-friendly software and ease of integration with other PC-based components, such as PC-based machine vision or data acquisition. A single platform can synchronize each of these pieces to one another, opening up new possibilities for automated inspection.

DMC1000E DMC2410E DMC5480 ENC7480 SMC6480 SMC6400E However, the PCI architecture offers only a bus-based approach. In applications where the motion controller has to handle functions independent of a PC or in cases where the machine doesn't have PC control, PCI architecture doesn't work. However, most fieldbus or Ethernet controllers can operate as stand-alone devices. Nevertheless, the trend toward integrating vision and motion system software can increase the use of the PC-based motion controllers among applications that need high-level precision.

Fieldbus.

Originally designed as a replacement for the 4-20mA analog control method, fieldbus is a generic term that covers many different industrial network protocols. Two of the most popular protocols are DeviceNet and Profibus. Generally, fieldbus protocols originate with specific programmable logic controller (PLC) manufacturers, and their performance and hardware interfaces differ. Software is a key component in the fieldbus standard, and such equipment often required custom software to make the systems work.

Ethernet.

Ethernet offers a variety of advantages for today's motion control needs. It's usually incorporated into a motion control system through a standard ethernet cable.

Using Ethernet TCP/IP can help eliminate the problems inherent with PCI architecture. Ethernet devices are stand-alone and outside the PC. And another important advantage of the Ethernet protocol is its inherent scalability.

Most supervisory control and data acquisition (SCADA) networks use TCP/IP over Ethernet as the network protocol and physical layer. If a motion controller must connect to a factory network through a network interface, Ethernet motion controller is a good choice.

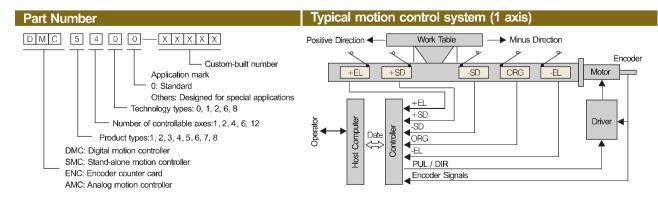
Typical Controller Features

Controllers generate several types of motion profiles including point-to-point, linear/circular interpolation, and contouring.

Point-to-point motion is the most basic type of controlled motion. As the name implies, an axis is made to move from one position to another. Point-to-point motion is used in applications where complex trajectories are not important such as moving a slide to a certain position or indexing a conveyor belt.

Linear interpolation extends the point-to-point approach to include coordinated motion between two or more axes. Linear interpolation specifies a target destination in two or three dimensional space. Axes move in concert plotting a direct path to the specified destination. Circular interpolation also involves coordination of multiple axes. Circular interpolation is a hardware feature of many controllers that creates smooth circular paths without chordal error by connecting several short linear moves or chords. The combination of circular and linear interpolation enables the creation of many complex trajectories.

Some paths, however, can not be defined using simple lines and arcs. Such complex paths require controllers that support contouring. Contouring can be used for special applications like complex CNC machining, earthquake simulation.


Leadshine's Motion Controllers

Since releasing its first motion controller in 1997, Leadshine has been developing new products to meet the needs of its customers in a wide range of industries. Today, thousands of Leadshine motion controllers are deployed around the world in hundreds of industries. These applications include PCB drilling and milling machines, coordinate measuring machines (CMM), laser welding machines, vision and photo composition automation, electronic manufacturing and assembly, measurement device, biotech sampling and handing, LCD manufacturing, robotics, electronic assembly and measurement equipment, AOI machines, screen printing machines, and so on.

Leadshine is distinguished from others by providing motion controllers that are highly reliable, cost-effective, and easy-to-use. Leadshine's full line of motion controllers includes single and multi-axis, bus-based and stand-alone controllers. Available interface options for international markets include PCI bus, Ethernet, USB and RS232 for the moment. By using one ASIC microcomputer, Leadshine's controllers provide high speed performance and can handle many modes of motion such as point-to-point positioning, jogging, linear and circular interpolation, continuous interpolation and helix interpolation.

All of them are SMT processed with high reliability. They are suitable for stepping and digital servo control systems. Leadshine offers drivers, demo software, and documents to help the users to develop their own application software with G code or VB/VC/C++ Builder/LabVIEW in Window95/98/2000/NT/XP.

Selection Table (Visit www.leadshine.com for information about other motion controllers.)						
Model Features	DMC1000B	DMC2410B	DMC5480	SMC6480	SMC6400B	ENC7480
Number of Controllable Axes	4	4	4	4	4	4
Interfaces	PCI	PCI	PCI	Stand-alone, USB RS232, Ethernet	Stand-alone, USB RS232	PCI
Pulse Output Frequency (Max)	1.2 MPPS	5 MPPS	8.0 MPPS	5.0 MPPS	5.0 MPPS	-
Encoder Input Frequency (Max)	-	4 MHz	6 MHz	-	-	6.5 MHz
Position Ranges	24-bit \pm (8,388,608 pulses)	$\begin{array}{c} \textbf{28-bit} \\ \pm (134,\!217,\!728 \text{ pulses}) \end{array}$	28-bit ±(134,217,728 pulses)	32-bit ± (2,147,483,648 pulses)	$\begin{array}{c} \textbf{28-bit} \\ \pm \textbf{(134,217,728 pulses)} \end{array}$	-
General purpose I/O	32 Inputs / 28 Outputs	20 Inputs / 20 Outputs	20 Inputs / 20 Outputs	32 Inputs / 24 Outputs	16 Inputs / 24 Outputs	32 Inputs / 32 Outputs
Linear Interpolation	2~4 axes	2~4 axes	2~4 axes	2~4 axes	2~4 axes	-
Circular Interpolation	Any 2 axes Software Interpolation	Any 2 axes High Speed Hardware Interpolation	Any 2 axes High Speed Hardware Interpolation	Any 2 axes High Speed Hardware Interpolation	Any 2 axes Software Interpolation	-
Continuous Interpolation	-	Yes	Yes	Yes	Yes	-
Acceleration and Deceleration	Equal	Equal or Unequal	Equal or Unequal	Equal or Unequal	Equal or Unequal	-
Encoder Counter	-	$\begin{array}{c} \textbf{28-bit} \\ \pm (134,\!217,\!728 \text{ pulses}) \end{array}$	32-bit ± (2,147,483,647 pulses)	28-bit \pm (134,217,728 pulses)	$\begin{array}{c} \textbf{28-bit} \\ \pm \textbf{(134,217,728 pulses)} \end{array}$	28-bit \pm (134,217,728 pulses)
Manual Pulser Input	-	100 KHz (Max)	100 KHz (Max)	100 KHz (Max)	100 KHz (Max)	-
Index Signal Input	-	Yes	Yes	Yes	Yes	Yes

DMC1000B DMC2410B DMC5480 ENC7480 SMC6480

DMC1000B

Features:

- 4 axes of pulse and direction signal output for controlling stepping or digital servo.
- 32-bit PCI-Bus plug and play.
- Maximum output frequency is up to 1.2 Mpps.
- 2~4 axes linear interpolation.
- Any 2 of 4 axes circular interpolation.
- Home switch, positive and negative limit and slow down switches interface provided for all axes.
- Control signal types: PUL/DIR, CW/CCW
- All I/O Isolated
- Trapezoidal and S-curve velocity profiles.
- Motion1000 demo software for verifying and testing a motion control system.
- DMC1000.DLL for API function calling in Windows 95/98/NT/2000/XP/7
- systems with VB/VC/C++ Builder/LabVIEW

Introduction

The DMC1000B is an extremely cost-effective motion controller. However, it still provides a variety of motion control functions for 1 axis to 4 axes stepping or digital servo systems. Its pulse output frequency is up to 1.2 MHz with trapezoidal and S-curve velocity profiles acceleration/deceleration. In single axis operation, change position and speed on the fly are available.

It supports PUL/DIR, CW/CCW, single-ened, differential commanding signals, and offers 20 general purpose digital inputs and 16 general purpose digital outputs, making easier to build an integrated system.

Motion1000 demo software, a Microsoft Windows based software is equipped with the DMC1000 for supporting application development. It is very helpful for verifying and testing a motion control system during the design phase of a project. Besides this demo software, a Windows version function library (DLL) is included for programmers using VB/VC/C++ Builder/LabVIEW programming languages. Several sample programs are given to illustrate how to use the function library in WINDOWS XP/2000/NT/98/WIN7.

Applications

- High precision X-Y-Z table,
- PC-based CNC machining center,
- High precision rotation control device,
- Packing machines,
- Semiconductor, LCD manufacturing,
- · Laboratory automation, and etc.

Cincol

Specifications	
Number of controllable axes:	4 axes
Maximum pulse output frequency:	1.2MHz
Position setting range:	-8,388,608 to +8,388,608 pulses
Number of general purpose I/O:	32 DI / 28 DO
Operating temperature:	0 °C to 50 °C
Storage temperature:	-20 °C to 80 °C
Humidity:	5%RH to 85%RH
Power Consumption	-
PCI slot (input):	\pm 5VDC \pm 5%, @ 900mA (Max)
External power supply (input):	\pm 12 to 24VDC \pm 5%, @ 500mA (Max)
Dimension:	146.5 mm(W) x 106.5 mm(H)

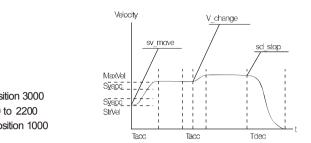
Build Intended Programs

Its DLL offers up to 40 API functions, and the user can build an intended program with VB/VC/C++ Builder/ LabView in a short time.

Code Example : #Include<dmc1000 h>

void main(void)

- int card=d1000 board init();
- d1000_set_command_pos(0,0);
- d1000_start_sa_move (0,3000,100,2000,0.1); // Move Axis0 to the position 3000 while(d1000 get command pos (0) >1000); // Chang speed of Axis 0 to 2200 d1000_change_speed(0,2200); // after it reaches the position 1000 while(d1000_check_done(0)==1); // Wait until Axis0 stops


Connector

The DMC1000B uses a 68pin SCSI-II connector, and it contains the following signals.

Order Information

- PCI-bus motion controller: DMC1000B
- Signal Cable: CABLE68
- Terminal Board: TB68
- Demo software and user's manual for DMC1000B

DMC1000B

DMC2410B

Features:

- 4 axes of pulse and direction signal output for controlling stepping or digital servo.
- 32-bit PCI-Bus plug and play.
- Maximum output frequency is up to 5 Mpps.
- 2~4 axes linear interpolation.
- Any 2 of 4 axes circular interpolation.
- Trapezoidal and S-curve velocity profiles.
- Control signal types: PUL/DIR, CW/CCW; single-ened, differential
- 28-bit up/down counters for incremental encoder feedbacks.
- Number of general purpose DI/DO: 20/20
- Software supports up to 8 pieces DMC2410 operation in one computer.
- Motion2410 demo software for verifying and testing a motion control system.
- DMC2410.DLL for API function calling in Windows 95/98/NT/2000/XP/7
- systems with VB/VC/C++ Builder/LabVIEW

Introduction

Highly Cost-effective Motion Controller

The DMC2410B is a highly cost-effective PCI-bus motion controller. It offers 1 axis to 4 axes motion control for stepping systems or digital servo systems to accomplish various operations. Compare to the DMC1000B, it provides better performance in pulse output frequency and interpolation. What's more, it offers incremental encoder interface on all four axes.

Linear and Circular Interpolation

In multi-axis operation, the DMC2410B provides linear interpolation by any 2, any 3, or even all-4 axes. Any 2 axes can perform circular interpolation. And all the interpolation are done by hardware, so it offers much better interpolation performance than the controllers using software interpolations.

Continuous Interpolation

The DMC2410B supports continuous interpolation with velocity continuity in multi-axes operation.

Change Position and Speed on The Fly

In single axis operation, change position and speed on the fly are available, making a much complicated velocity profile can be achieved.

Position Latching and Comparing

With the help of on board FIFO, the DMC2410 can also perform precise and extremely fast position latching, position compare and trigger functions without consuming CPU resource.

Simultaneous Start and Stop

Multiple DMC2410B controllers can be used in one computer. If there are two or more DMC2410B controllers, simultaneous start/stop control on all concerned axes is possible.

Applications

- Vision and photo composition automation
- Electronic manufacturing and assembly
- Measurement device
- Biotech sampling and handing
- Laser processing
- CNC machines

Performance

Number of controllable axes:	4
Number of controllers operate in 1 computer:	8
Maximum pulse output frequency:	5 MHz
Control signal types:	6
Position setting range:	-134217
Number of supported encoders:	4
Encoder counter counting range:	28 bit
Maximum encoder input frequency:	4MHz(

I/O Signals

Incremental encoder signals input pins:	EA, EB
Encoder index signal input pin:	EZ
Position latch input pin:	LTC
Position compare output pin:	CMP
Mechanical limit/slow down/switch signal input pins:	EL, SD,
Servo motor interface I/O pins:	INP, ALM
Simultaneous start/stop/slow-down signal I/O pins:	STA, ST
Manual pulser signal input pins:	PA, PB

General Purpose I/O	
Digital inputs:	20 (14 Opto-isolated)
Digital outputs:	20 (1 OC output)
32 Inputs /28 outputs including sp	ecial purpose DI/DO.

Conne	ectors			
Х	1 Connecto	Dr	X2 Conn	ector
	1 35 2 36 3 37 4 38 5 39 6 40 7 41 8 42 9 43 10 44 11 45 12 46 13 47 14 48 15 49 16 50 17 51 18 52 20 54 21 55 22 56 23 57 24 58 25 59 26 60 27 61 28 62 30 64 31 65 32 66 33 67 34 68 0 Comman (68-pin SC)	DIR3+ DIR3 PUL4+ PUL4+ DIR4- IN3 IN4 ALM3 INP4 RDY3 EL4+ EL4+ EL4- SD4PCS4 ORG4 GND EMG	5V 1 GND 2 EA1+ 3 EA1+ 4 EB1+ 5 ED1- 6 EZ1+ 7 EX1+ 7 GND 10 EA1+ 7 EX1- 8 UTC1- 9 5V 10 GND 11 EA3+ 13 EB3+ 14 EZ3+ 16 EZ3+ 16 EZ3+ 16 EZ3+ 18 5V 19	0
	ar Inforr	n official		

Order Information

- DMC2410 Highly Cost-effective motion controller
- CABLE68-2.0 Cable for X1 connector and TB68 (2m)
- TB68 Terminal board for X1 connector
- EB37 40-pin IDE to 37-pin MCR connector with bracket
- CABLE37-2.0 Cable for EB37 (X2, X3 connectors) and TB37 (2m) axis, easier for wiring and connecting.
- TB37 Terminal board for X2, X3 connectors

7728 to +134217728 pulses

(X4)

d, org LM, Erc, svon, rd Stp, csd

> Dimensions 178mm x 106.5 mm

X	3 Cor	necto	or 🛛
INS IN6 IN7 IN8 IN9 IN10 IN11 IN12 IN13 IN14 IN15 IN16 IN17 IN18 IN17 IN18 IN17 IN18 IN17 IN18 IN17 IN18 IN17	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 17 18 19	20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 35 37	LTC3- OUT5 OUT6 OUT7 OUT7 OUT10 OUT11 OUT12 OUT11 OUT12 OUT14 OUT15 OUT16 OUT17 OUT17 OUT17 OUT18 OUT19 OUT19 OUT19
	7-pin	<u> </u>)
(0		- 00L	-

DMC1000B DMC2410B DMC5480 ENC5480 SINC5480 SINC5400B

ACC2410 Terminal Board

Upgrade TB68 and TB37, offering better anti-interference performance. 4 D-sub connectors, and each D-sub connector includes all signals for one axis, easier for wiring and connecting.

DMC5480

Features:

- 4 axes of pulse and direction signal output for controlling stepping or digital servo.
- 32-bit PCI-Bus plug and play.
- Maximum output frequency is up to 8 Mpps.
- Continuous interpolation with velocity continuity in multi-axes operation
- 2~4 axes linear interpolation.
- Any 2 of 4 axes circular interpolation.
- Trapezoidal and S-curve velocity profiles.
- Control signal types: PUL/DIR, CW/CCW; single-ened, differential
- 28-bit up/down counters for incremental encoder feedbacks.
- Number of general purpose DI/DO: 20/20
- Software supports up to 8 pieces DMC5400 operation in one computer.
- Motion5480 demo software for verifying and testing a motion control system.
- DMC5480.DLL for API function calling in Windows 95/98/NT/2000/XP/7 systems with VB/VC/C++ Builder/LabVIEW

Introduction

The DMC5480 is a high performance PCI-bus motion controller. It can generate pulse control signals (up to 8 MHz) to control 4 axes stepping or digital servo systems.

As a motion controller, it provides trapezoidal and S-curve velocity profiles acceleration/deceleration, circular interpolation between any two axes, linear interpolation between 2~4 axes, continuous interpolation with velocity continuity in multi-axes operation. In single axis operation, change position and speed on the fly are available. It offers13 home return modes. Since these functions needing complex computations are done internally on the ASIC, the computer's CPU is free to supervise and perform other tasks.

Multiple DMC5480 controllers can be used in one computer. Incremental encoder interface on all four axes provide the ability to correct positioning errors generated by inaccurate mechanical transmissions. With the help of on board FIFO, the DMC5480 can also perform precise and extremely fast position compare and trigger function without consuming CPU resource. In addition, mechanical sensor interface, servo motor interface and general-purpose I/O signals are provided for system integration.

Motion5480 demo software, a Microsoft Windows based software is equipped with the DMC5480 card for supporting application development. It is very helpful for verifying and testing a motion control system during the design phase of a project. Besides this demo software, a Windows version function library (DLL) is included for programmers using VB/VC/C++ Builder/LabVIEW programming languages. Several sample programs are given to illustrate how to use the function library in WINDOWS XP/2000/NT/98/WIN7.

Applications

- Electronic manufacturing and assembly,
- Vision and photo composition automation
- Measurement device
- Biotech sampling and handing
- Laser processing
- Robotics
- CNC machines
- Laboratory automation

Performance

ŀ
}
MHz
i
2,147,48
2 bit
iMHz (

I/O Signals

Incremental encoder signals input pins:	EA, EB
Encoder index signal input pin:	EZ
Position latch input pin:	LTC
Position compare output pin:	CMP
Mechanical limit/slow down/switch signal input pins:	EL, SD
Servo motor interface I/O pins:	INP, AL
Simultaneous start/stop/slow-down signal I/O pins:	STA, S
Manual pulser signal input pins:	PA, PB

General Purpose I/O

Digital inputs:	20 (14 Opto-isolated)
Digital outputs:	20 (1 OC output)
32 Inputs /28 outputs including s	pecial purpose DI/DO.

Connectors

X1 Connector X2 Conne EA1-EA1 EB1+ EB1 EZ1+ PUL PUL3-DIR1-DIR3-DIR1 DIR3 PUL2 PUL4-PUL2 DIR2 LTC1 EA3+ EA3 DIR DIR4 OUT SEVON1/OUT SEVON3/OUT2 EB3+ EB3-SEVON2/OUT2 SEVON4/OUT28 ERC3/OUT31 EZ3+ ERC2/OUT30 ERC4/OUT32 EZ3 CMP1/OUT2 CMP2/OUT22 CMP3/OUT23 LTC3+ CMP4/OUT24 LTC3 GNE 18 19 ALM1/IN33 ALM3/IN35 GND 53 INP1/IN29 INP3/IN31 20 In21 EL1 EL3 SD1/IN25 SD3/IN2 ORG ALM2/IN3 ALM4/II 60 INP2/IN3 INP4/IN3 30 64 SD2/IN26 D4/IN 65 ORG 32 33 EGNE

Order Information

• DMC5480	High performance motion controller	U
• CABLE68-2.0	Cable for X1 connector and TB68 (2m)	b
• TB68	Terminal board for X1 connector	D
• EB37	40-pin IDE to 37-pin MCR connector with bracket	C
• CABLE37-2.0	Cable for EB37 (X2, X3 connectors)and TB37 (2m)	a
• TB37	Terminal board for X2, X3 connectors	

483,647 to +2,147,483,647 pulses

(X4)

D, ORG LM, ERC, SVON, RD STP, CSD

Dimensions 178mm x 106.5 mm

ecto	or	Xa	3 Connecto	r
20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37	EA2+ EA2+ EB2+ EB2+ EZ2+ EZ2+ EZ2+ EZ4+ EA4+ GND	IN5 IN6 IN7 IN8 IN9 IN11 IN12 IN13 IN14 IN15 IN16 IN17 IN18 IN19 IN10 IN11 IN12 IN13 IN14 IN15 IN16 IN17 IN18 IN19 IN20 NC GND GND	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OUT5 OUT6 OUT7 OUT8 OUT9 OUT10 OUT112 OUT13 OUT14 OUT15 OUT16 OUT18 OUT18 OUT19 OUT18 OUT19 OUT18 OUT19 OUT18 OUT19 OUT20 NC GND

ACC2410 Terminal Board

Upgrade TB68 and TB37, offering better anti-interference performance. 4 D-sub connectors, and each D-sub connector includes all signals for one axis, easier for wiring and connecting.

Operating Environment	
Ambient Temperature	0°C to 50°C
Storage Temperature	-20°C to 80°C
Humidity	5%RH to 85%RH

7 - p	in D-sı	ub conn	ector X ₁	(Encode	rs) ["]	40-pin IDE
--------------	---------	---------	----------------------	---------	------------------	------------

Arpin D-sub connector X, (Encoders)40-pin IDE to 37-pin D-sub connector X, (I/O)40-pin IDE to 37-pin D-sub connector X, (I/O) \overrightarrow{SV} 1 2 21 \overrightarrow{SV} 1 20 \overrightarrow{SND} 1 20 \overrightarrow{SND} $\overrightarrow{EA1+}$ 3 22 21 $\overrightarrow{EA2+}$ $\overrightarrow{N13}$ 3 22 $\overrightarrow{OUT12}$ $\overrightarrow{N13}$ 2 21 $\overrightarrow{OUT17}$ $\overrightarrow{EA1+}$ 3 22 $\overrightarrow{OUT2}$ $\overrightarrow{N13}$ 3 22 $\overrightarrow{OUT12}$ $\overrightarrow{N13}$ 2 20 $\overrightarrow{EB1+}$ 5 24 $\overrightarrow{OUT2}$ $\overrightarrow{N13}$ 3 22 $\overrightarrow{OUT17}$ $\overrightarrow{N22}$ 6 24 $\overrightarrow{ED1+}$ 7 26 $\overrightarrow{OUT2}$ $\overrightarrow{N13}$ 7 26 $\overrightarrow{OUT2}$ $\overrightarrow{ED1+}$ 7 26 $\overrightarrow{OUT2}$ $\overrightarrow{N12}$ 7 26 $\overrightarrow{ED1+}$ 7 26 $\overrightarrow{OUT7}$ $\overrightarrow{N22}$ 9 7 $\overrightarrow{ED1+}$ $\overrightarrow{N13}$ $\overrightarrow{N12}$ $\overrightarrow{N12}$ $\overrightarrow{N22}$ 9 7 $\overrightarrow{ED1+}$ $\overrightarrow{N22}$ $\overrightarrow{N12}$ $\overrightarrow{N22}$ 9 7 0 $\overrightarrow{ED1+}$ $\overrightarrow{N22}$ $\overrightarrow{N22}$ $\overrightarrow{N22}$ $\overrightarrow{N22}$ 32 0 $\overrightarrow{N12}$ $\overrightarrow{N22}$ $\overrightarrow{N22}$ $\overrightarrow{N22}$ 32 0 0 $\overrightarrow{N22}$ $\overrightarrow{N22}$ $\overrightarrow{N22}$ $\overrightarrow{N22}$ $\overrightarrow{N22}$ 32 0 $\overrightarrow{N22}$ $\overrightarrow{N22}$ $\overrightarrow{N22}$ $\overrightarrow{N22}$ $\overrightarrow{N22}$ 32 0 $\overrightarrow{N22}$ $\overrightarrow{N22}$ $\overrightarrow{N22}$ $\overrightarrow{N22}$ $\overrightarrow{N22}$ 33 <td< th=""></td<>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
ABLE37-0.15-5B Breakout Cable
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
39 connector for encoders (female) Mini DIN 6-pin connector for probe (female) Mini DIN 6-pin connector for pedal (female)
Prder Information
NC7480 4-channel quadrature encoder interface card without I/O ports
NC7480-IO 4-channel guadrature encoder interface card with I/O ports
ABLE37-2.0 Cable with DB37 female connectors (2 meters long)
CC37-74ENC Termination Board with DB37 male connector
B37 Extension bracket with DB37 male connector
ABLE37-0.15-5B DB37 breakout cable: one end is DB37 female connector; another end includes 3 encoders' connectors, a probe's connector and a pedal's connector
otes: r most applications, please choose CABLE37 and ACC37-74ENC for wiring. If the application need I/O extension, the user will need 1 or 2 t of EB37, CABLE37 and ACC37-74ENC additionally.
r manual CMM machines, usually the CABLE37-015-5B breakout cable is a more convenient choice.

40-pin IDE to 37-pin D-sub connector $X_{ m 2}$ (I/O)	40-pin IDE to 37-pin D-sub connector X ₃ (I/O)
IN1 1 2 20 GND IN3 3 21 OUT1 OUT2 IN4 4 22 OUT3 OUT2 IN5 5 24 OUT5 OUT6 IN7 7 25 OUT6 OUT6 IN9 9 27 OUT8 OUT9 IN10 10 28 OUT9 OUT10 IN12 12 20 OUT11 IN12 IN11 11 30 OUT10 IN11 IN12 12 30 OUT11 IN13 IN13 13 30 OUT12 IN14 IN14 14 32 OUT13 IOUT14 IN16 16 34 OUT16 GND 33V 337 17 35 OUT16 I9 37 19 37	IN17 1 20 GND IN18 2 21 OUT17 IN19 3 22 OUT18 IN20 4 22 OUT19 IN21 5 23 OUT20 IN23 7 26 OUT21 IN23 7 26 OUT22 IN24 7 26 OUT22 IN25 9 27 OUT24 IN26 9 27 OUT24 IN26 9 OUT26 OUT24 IN26 10 29 OUT26 IN27 11 29 OUT26 IN28 12 30 OUT27 IN29 12 30 OUT28 IN30 13 32 OUT28 IN31 15 33 OUT30 IN32 16 34 OUT31 3.33/ 18 37 I 9 37
abla	
able	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 NC C GND
Mini DIN 6-pin connector for probe (female) Mini DIN	6-pin connector for pedal (female)
I quadrature encoder interface card without I/O ports I quadrature encoder interface card with I/O ports In DB37 female connectors (2 meters long) In Board with DB37 male connector bracket with DB37 male connector akout cable: one end is DB37 female connector; another end dal's connector	nd includes 3 encoders' connectors, a probe's connector
CABLE37 and ACC37-74ENC for wiring. If the applica ENC additionally. INC ABLE37-015-5B breakout cable is a more conver ant to custom a breakout cable.	

Connectors	
37-pin D-sub connector X, (Er	accders) 40-pin IDE to 37-pin D-sub connector X_2 (I/O) 40-pin IDE to 37-pin D-sub connector X_3 (I/O)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	IN3 3 21 OUT2 IN19 3 21 OUT18 IN4 4 22 OUT3 IN21 4 22 OUT19 IN5 5 23 OUT4 IN21 5 23 OUT20 IN6 6 24 OUT5 IN22 6 OUT21 IN7 7 26 OUT6 IN23 7 25 OUT21 IN7 7 26 OUT7 IN24 8 26 OUT22 IN8 8 26 OUT7 IN25 9 27 OUT23 IN9 9 27 OUT8 IN26 10 28 OUT26 IN10 10 28 OUT9 IN26 10 29 OUT26 IN11 11 29 OUT10 IN27 11 29 OUT26 IN12 12 31 OUT11 IN28 12 31 OUT27
CABLE37-0.15-5B Brea	akout Cable
$\begin{array}{c c} A \\ GND \\ B \\ GND \\ Z \\ C \\ C \\ Z \\ DB \\ C \\ $	GND 6 GND 5 GND 3 GND 3 GND 1 Tr1+ 3 4 NC 2 LED 2 GND 1 NC NC 1 GND 4 SND 2 Mini DIN 6-pin connector for probe (female) Mini DIN 6-pin connector for pedal (female) Mini DIN 6-pin connector for pedal (female)
Order Information	
ENC7480	4-channel quadrature encoder interface card without I/O ports
ENC7480-IO	4-channel quadrature encoder interface card with I/O ports
CABLE37-2.0	Cable with DB37 female connectors (2 meters long)
ACC37-74ENC	Termination Board with DB37 male connector
EB37	Extension bracket with DB37 male connector
CABLE37-0.15-5B	DB37 breakout cable: one end is DB37 female connector; another end includes 3 encoders' connectors, a probe's connector and a pedal's connector
set of EB37, CABLE37 and A	·
	usually the CABLE37-015-5B breakout cable is a more convenient choice. ne user want to custom a breakout cable.
i lease contact Leausnine II ti	ie user want to custoff a preakout capie.

ENC7480

Features:

- 32-bit PCI Bus, plug and play
- 4-axis 28-bit counters, up to 5 MHz (X4 is 20 MHz)
- Counters for quadrature AB phase encoder or general purpose up/down counter
- Supports differential and single-ended inputs
- Latches 4 axes' positions by 2 triggers with interrupt function
- Auxiliary +5V encoder supply
- 32 DI and 32 DO, 32 of 51 inputs with interrupt function, initial level of 32 outputs settable.
- LED and buzzer outputs, which are synchronous with trigger signals
- One 37-pin rugged connector for encoder signals, two 40-pin header connectors for I/O

Introduction

Designed to interface industry standard rotary shaft encoders and linear encoders to PC compatible computers, the ENC7480 incremental encoder interface makes it possible to measure position, velocity and acceleration in such wide ranging applications as co-ordinate measuring machines, robotics and CNC machine tools.

Based on a custom designed ASIC quadrature counter, the ENC7480 interface card provides four independent encoder channels each with a 28-bit position counter with a maximum count rate of 4MHz. The ENC7480 contains a powerful event system which allows events generated by a trigger signal to latch encoder positions. Further more, 64 digital I/O are provided.

A comprehensive software support package includes libraries and examples for modern rapid application development tools such as Visual Basic, Visual C. Plug and Play software support for Windows 98/2000/ME/XP and NT enables simple installation and automatic configuration of up to 5 interfaces supporting a total of 20 encoders.

The ENC7480 enables both OEMs and end users to create powerful and highly flexible PC based measurement systems.

Applications

- Manual CMM machines position measurement, Measurement systems
- Automation & process control
- Control system diagnostics
- Metrology

Encoder Counter Specifications	
Number of channels	4
Counter resolution	28-bit
Counter types	A, B phase; PUL/DIR
Maximum counting rate	4 MHz (X4, 20 MHz)
Auxiliary power supply for per encoder	5V ± 5%, @ 100mA (Max.)

General Purpose Digital I/O

Number of general purpose DI	32
Number of general purpose DO	32
Digital I/O type	LV TTL

ENC748

SMC6480 Ethernet Motion Controller

Features:

- Ethernet supports multiple masters and slaves.
- TCP/IP protocol for long-range control
- Pulse output rate up to 5 MHz
- 2~4 axes linear interpolation
- 2 axes circular interpolation
- Multi-axis continuous interpolation
- Good contouring performance with the advanced path planning software
- Support BASIC and G code in stand-alone mode
- •2 D/A and 2 PWM outputs for custom use
- Support touch screen and USB flash disk, easy-to-use

Introduction

The SMC6480 is a high performance, Ethernet motion controller, which based on a 32-bit RISC CPU and a FPGA. It offers 1 axis to 4 axes motion control for stepping motors or servo motors to accomplish various operations. The SMC6480 can operate stand-alone or interface to a PC and USB flash disk over Ethernet and USB interface.

In multi-axis operation, the SMC6480 provides linear interpolation by any 2, any 3, or even all-4 axes. Any 2 axes can perform circular interpolation. And the SMC6480 supports the continuous interpolation function. All interpolations are realized by hardware, so faster interpolation speed, better interpolation accuracy and higher stability.

The SMC6480 can work in stand-alone mode, and supports standard ISO G code programming. The user can edit G code program with text monitor, touch screen or on a PC before downloading the program to the controller over Ethernet or USB interface or USB flash disk.

The SMC6480 supports master-slave control mode. The user can realize real-time control by using a computer as a master controller. The application software developed with VB/VC/C++ Build/LabView on master computer can control or communicate with the SMC6480 over Ethernet.

Operation Modes Applications 1. Master-slave Control Mode • Electronic assembly and measurement equipment The SMC6480 supports master-slave control mode. The user can Semiconductor and LCD manufacturing & measurement equipment realize real-time control by using a computer as a master controller. Laser cutting/engraving/marking equipment The application software developed with VB/VC/C++ Build/LabView Biotech sampling and handing device on master computer can control or communicate with the Robotics SMC6480 over Ethernet. Special CNC machines 2. Stand-alone Mode Then SMC6480 can work in stand-alone mode, and the user can make an application program with G code. Motion Control Specifications

Number of controllable axes:	4
Maximum pulse output frequency	5 MHz
Pulse output frequency accuracy	± 0.1 Hz
2 to 4 axes linear interpolation	± 1 pulse
Any 2 axes circular interpolation	± 1 pulse
Position range:	-2,147,483,647 to +2,147,483,648 pulses (32-bit)
6 pulse/dir output modes:	Pulse /DIR, CW/CCW, etc.

DA Outputs

DA outputs

2 DA outputs (8-bit), 0.07 to 4.45 V

I/O Signals General purpos	e digital inputs:	32 E	I (16 DI are opto-iso	plated, and 16 DI	are non-isolated.)					
	e digital outputs::	32 DI (16 DI are opto-isolated, and 16 DI are non-isolated.) 24 DO (8 DO are opto-isolated, and 16 DO are non-isolated.)								
	o digital odipaton	All DI including special purpose digital inputs have RC low-pass filter.								
PWM Outpu	ts									
PWM outputs		2 6	WM outputs. Maxi	mum frequency is	s 1 MHz, duty ratio	0 to 100% adjust	able			
		21		man nequoney k						
Power Sup Power supply	plies for the controller:	+12	to 24VDC±5%, 11	100mA(Max)						
Dimension										
	16 mm(W) x 40 mm(H)	1 inc	ch = 25.4 mm							
Connector	S									
Motion C	connector J21	I/O Co	nnector J11	I/O Con	nector JPI01	I/O Con	nector JPI02			
Pin	Name	Pin	Name	Pin	Name	Pin	Name			
1	PUL1+	1	IN1	1	VCC3.3	1	VCC3.3			
2	PUL1-	2	IN2	2	GND	2	GND			
3	DIR1+	3	IN3	3	IN24/ALM4	3	IN32			
4	DIR1-	4	IN4	4	OUT16	4	OUT24			
5	PUL2+	5	IN5	5	5 IN23/ALM3		IN31			
6	PUL2-	6	IN6	6	OUT15	6	OUT23			
7	DIR2+	7	IN7	7	IN22/ALM2	7	IN30			
8	DIR2-	8	IN8	8	OUT14	8	OUT22			
9	PUL3+	9	IN9	9	IN21/ALM1	9	IN29			
10	PUL3-	10	IN10	10	OUT13	10	OUT21			
11	DIR3+	11	IN1 1	11 IN20		11	IN28			
12	DIR3-	12	IN12	12	OUT12	12	OUT20			
13	PUL4+	13	IN13/INP1	13	IN19	13	IN27			
14	PUL4-	14	IN14/INP2	14	OUT11	14	OUT19			
15	DIR4+	15	IN15/INP3	15	IN18	15	IN26			
16	DIR4-	16	IN16/INP4	16	OUT10	16	OUT18			
17	+5V	17	OUT1	17	IN17	17	IN25			
18	ELx+	18	OUT2	18	OUT9	18	OUT17			
19	ELx-	19	OUT3	19	VDD	19	VDD			
20	Ely+	20	OUT4	20	EXGND	20	EXGND			
21	Ely-	21	OUT5		Connector J3	COM2 C	onnector J4			
22	ELz+	22	OUT6	Pin	Name	Pin	Name			
23	ELz-	23	OUT7	1	RXD0	1	TXD1			
24	Elu+	24	OUT8	2	TXD0	2	RXD1			
25	Elu-	25	PWM2	3	EXGND	3	EXGND			
26	ORGx	26	PWM1							
27	ORGy	27	VDD	Digital Outpu	t Initial Setting S1		Connector J2			
28	ORGz	28	EXGND	Pin	Name	Pin	Name			
29	ORGu	29	EXGND	1	SEL3	Analog_A	DA Output			
30	EXGND	30	EXGND	2	SEL2	Analog_B	DA Output I			
31	EXGND	31	EXGND	3	SEL1	AGND	DA Ground			
00	EVOND		EVOND							

Order Information

32

• SMC6480: High performance Ethernet motion controller (4-axis).

32

- ACC37-7480-V1.0: Terminal board for I/O expansion connectors JPI01 and JPI02.
- CABLE37-DP-08: Cable for the ACC37-7480-V1.0 and I/O expansion connectors JPI01 and JPI02.
- CABLE09-DP-10: Communication cable for the touch screen and the controller.
- Touch screen: MT6056iV or MT6070 (optional).

EXGND

SMC648

DA Ground

SELO

AGND

EXGND

SMC6400B

Features:

- Operates stand-alone or interfaces to a PC or USB flash disk with US
- Supports G code/VB/VC programming
- Pulse output rate up to 5 MHz
- •6 pulse/dir output modes: Pulse /DIR, CW/CCW etc.
- 2~4 axes linear interpolation
- 2 axes circular interpolation
- Multi-axis continuous interpolation
- Teach and playback
- 2 home return modes
- Trapezoidal and S-curve velocity profiles programmable
- Multi-axis, simultaneous start/stop
- Position limit and return home signals for each axis
- Standard servo motor control signal for each axis
- 16 digital inputs, 24 digital outputs
- Touch screen and text monitor optional

Introduction

High performance stand-alone 4-axis motion controller

The SMC6400B is a high performance, stand-alone motion controller, which based on a 32-bit RISC CPU. It offers 1 to 4 axes motion control for stepping motors or servo motors to accomplish various operations. The SMC6400 can operate stand-alone or interface to a PC and USB flash disk with USB interface.

G code programming

The SMC6400 supports standard ISO G code programming. The user can edit G code program with text monitor, touch screen or on a PC before downloading the program to the controller through USB interface or USB flash disk.

Teaching-playback function

The controller supports teaching-playback function. The user can generate simple program by using text monitor or touch screen when the controller in teach-in mode, so the user does not need to learn any program language.

Communication Interfaces

The user can download user program and configure the controller through PC's USB interface, in addition, user program can be changed while the SMC6400 operating under stand-alone condition when start-up with an USB flash disk which has stored user program.

Program memory

User program memory capacity up to 32M flash and each user program can be up to 5000 rows G code, 128 kByte.

Linear, circular interpolation and continuous contouring

In multi-axis operation, the SMC6400 provides linear interpolation by any 2, any 3, or even all-4 axes. Any 2 axes can perform circular interpolation. And the SMC6400 supports the continuous interpolation function.

Supports master-slave control mode

The SMC6400 supports master-slave control mode. The user can realize real-time control by using PC as a master controller.

Applications

- Electronic assembly and measurement equipment
- · Semiconductor and LCD manufacturing & measurement equipment
- Laser cutting/engraving/marking equipment
- Biotech sampling and handing device
- Robotics
- Special CNC machines

	•	23
SB interface	the second second	State of the second sec
æ	and the second sec	(The second seco
A CONTRACTOR OF	e and a	Y
	and the second	

Motion Control Specifications Number of controllable axes: 4 Maximum pulse output frequency 5 MHz 6 pulse/dir output modes: Pulse /DIR, CW/CCW, etc. Position range: I/O Signals Mechanical limit switch signal input pins: ± EL, SD and ORG (INP, ALM, ERC, SVO Standard servo motor control signal

1 inch = 25.4 mm

General purpose digital outputs:: 24 DO Communication Interfaces USB interface: USB1.1 U flash disk interface USB1.1 Serial interface: RS - 232 User Program Capacity User program memory capacity: 32M flash Each user program: 5000 rows G code,

Power Supplies Power supply for the controller: +12 to 24VDC±5%

Dimension 180 mm(L) x 110 mm(W) x 25 mm(H)

Manual pulser signal input

General purpose digital inputs:

Connectors

15-pin D-sub connectors (X, Y, Z, U) X8 for general purpose I/O					X9 for general purpose I/O				X10 for general purpose I/O						
Pin	Name	Pin	Name	Pin	Name	Pin	Name	Pin	Name	Pin	Name	Pin	Name	Pin	Name
1	VCC	9	PUL1+	1	E5V	11	OUT1	1	E5V	11	OUT16	1	OUT24	6	OUT19
2	PUL1-	10	DIR1+	2	EGND	12	OUT2	2	EGND	12	OUT15	2	OUT23	7	OUT18
3	DIR1-	11	OUT25	3	INPUT8	13	OUT3	3	INPUT9	13	OUT14	3	OUT22	8	OUT17
4	ERC1	12	INP1 /INPUT19	4	INPUT7	14	OUT4	4	INPUT10	14	OUT13	4	OUT21	9	EGND
5	INPUT17	13	ALM1	5	INPUT6	15	OUT5	5	INPUT11	15	OUT12	5	OUT20	10	
6	ORG1	14	SD1 /INPUT18	6	INPUT5	16	OUT6	6	INPUT12	16	OUT11				
7	EL1-	15	EI1+	7	INPUT4	17	OUT7	7	INPUT13	17	OUT10				
8	EGND			8	INPUT3	18	OUT8	8	INPUT14	18	OUT9				
				9	INPUT2	19	COM	9	INPUT15	19	COM				
				10	INPUT1	20	EGND	10	INPUT16	20	EGND				

Order Information

- SMC6400: High performance stand-alone motion controller (4-axis)
- ACC6400: Terminal board for the SMC6400
- 9PIN cable for RS232 communication
- Touch screen: MT6056iV or MT6070 (optional)

-134.217.728 to +134.217.728 pulses (28-bit)

± EL, SD and ORG (Optically Isolated)
INP, ALM, ERC, SVON, RDY
PA, PB
16 DI with opto-isolated
24 DO
USB1.1
USB1.1
RS - 232
32M flash
5000 rows G code, 128kByte
+12 to 24//DC+5% 500mA(Max)